Advertisement

Journal of Ornithology

, Volume 154, Issue 2, pp 501–516 | Cite as

Breeding ecology of the globally threatened Sociable Lapwing Vanellus gregarius and the demographic drivers of recent declines

  • Rob D. Sheldon
  • Johannes Kamp
  • Maxim A. Koshkin
  • Ruslan S. Urazaliev
  • Timur K. Iskakov
  • Rob H. Field
  • Albert R. Salemgareev
  • Valery V. Khrokov
  • Vasily A. Zhuly
  • Sergey L. Sklyarenko
  • Paul F. DonaldEmail author
Original Article

Abstract

We assessed demographic rates and numbers of the globally threatened Sociable Lapwing Vanellus gregarius in central Kazakhstan from 2005 to 2012 to identify drivers of recent declines. Annual fecundity, estimated from a sample of over 1,000 nest histories, was highly variable. Nest survival was higher closer to human settlements, despite higher trampling rates, and when there were more neighbouring nests, but distance to settlements and colony density both varied systematically between years. Both overall nest survival and annual adult survival were on average lower than those estimated for congeneric species elsewhere, although daily chick survival was high. Breeding site fidelity and natal philopatry were low and colonies fluctuated greatly in size between years, making estimation of population trends and survival difficult. Estimates of productivity and survival suggest that the population is in slight to severe decline, with a mean annual estimate of population growth rate (λ) of 0.81 (95 % CL 0.64–0.98). This is reflected in changes in the number of nests found in our core study area, which after 5 years of relative stability declined rapidly after 2010. Of the three demographic rates, adult survival had the greatest influence on λ and only adult survival reached levels necessary for λ to achieve an annual mean of 1 in the absence of a change in any other rate, though only in 1 year. Our results suggest that low adult survival, perhaps resulting from known hunting pressure along the migration routes, is the most critical demographic rate and offers the most tractable conservation solution.

Keywords

Steppe ecology Population models Breeding ecology Productivity Mortality 

Zusammenfassung

Brutbiologie und demografische Ursachen für den derzeitigen Rückgang des global gefährdeten Steppenkiebitzes Vanellus gregarius

In dieser Arbeit stellen wir Ergebnisse einer Studie zu Brutbiologie und demografischen Parametern des global bedrohten Steppenkiebitzes Vanellus gregarius vor, die zwischen 2005 und 2012 in Zentralkasachstan erhoben wurden. Die Fekundität (Anzahl geschlüpfter Küken pro Weibchen), bestimmt durch eine Analyse von über 1,000 Nestschicksalen, schwankte von Jahr zu Jahr stark. Überlebensraten von Nestern stiegen bei zunehmender Koloniedichte an und waren umso höher, je näher die Nestern an menschlichen Siedlungen lagen (trotz höheren Viehtrittrisikos). Beide Parameter variierten allerdings stark über den betrachteten Zeitraum. Die Überlebenswahrscheinlichkeit von Nestern wie auch von Altvögeln war im Mittel niedriger als bei verwandtschaftlich nahe stehenden Arten, allerdings war die tägliche Überlebenswahrscheinlichkeit von Küken hoch. Brutorttreue von Altvögeln und natale Philopatrie waren niedrig, und die Größe von Brutkolonien fluktuierte stark, daher war die Abschätzung eines Populationstrends und von Überlebenswahrscheinlichkeiten schwierig. Unsere Werte deuten aber auf einen aktuell leichten bis ernsthaften Populationsrückgang hin, und wir schätzen jährliche Zuwachsraten der untersuchten Population (λ) auf 0.81 (95 % CL 0.64–0.98). Dies manifestierte sich auch in einer Abnahme der gefundenen Nester in unserem Kernuntersuchungsgebiet seit 2010 nach fünf Jahren vorhergegangener relativer Stabilität. Die Überlebensrate adulter Vögel hatte von den drei untersuchten demographischen Parametern den stärksten Einfluss auf λ, und nur dieser Faktor erreichte Werte, die bei gleichzeitig unveränderten Überlebenswahrscheinlichkeiten von Nestern und Küken im betreffenden Jahr für Populationsstabilität nötig wären, allerdings nur in einem Jahr. Vielmehr scheinen hohe Altvogelverluste, möglicherweise verursacht durch den bekannt gewordenen hohen Jagddruck entlang der Zugwege, kritisch für das Überleben der Art zu sein—gleichzeitig ist dieser Faktor durch Naturschutzmaßnahmen am ehesten zu beeinflussen.

Notes

Acknowledgments

For help in the field we thank Alexei V. Koshkin, Stephan Goen, Viktoria A. Kovshar, Katie Field, Graeme Ruthven, Dave Fairlamb, Andrew Knight, Andrew Cotton, Paul Eele, John Wills, Andrew Gouldstone, Mark Underhill and the many students from the Universities of Karaganda, Petropavlovsk, Kostanai, Astana, Almaty and Tashkent who joined the field teams as part of a parallel programme of training. For additional support and advice we thank Michael Brombacher, Mark Day, Rhys Green, Norbert Schäffer, Lars Lachmann, Sergey Dereliev, Nigel Collar, Jim Lawrence, Edith Koshkin and Will Cresswell. R.D.S. is particularly grateful to Graham Hirons for allowing him the opportunity to work on this project. For technical advice, we thank Steffen Oppel, Will Peach, Andre Breton, Jen Sharp, Tom Bodey and Graeme Buchanan. Nigel Butcher built the nest cameras. This work was funded by the UK Government’s Darwin Initiative (grant references 15-032, 18-004 and EIDPO035). Additional funding was provided by Swarovski Optik (the BirdLife Species Champion for Sociable Lapwing) through the BirdLife Preventing Extinctions Programme, The Rufford Foundation, the African-Eurasian Waterbird Agreement (AEWA), the German Ornithological Society (DO-G) and the German Academic Exchange Service (DAAD). We are grateful to Will Cresswell and an anonymous reviewer for helpful comments on a previous draft.

Supplementary material

10336_2012_921_MOESM1_ESM.doc (243 kb)
Supplementary material 1 (DOC 243 kb)

References

  1. Bartoń K (2011) MuMln: multi-model inference. http://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf
  2. Bates D, Maechler M, Bolker B (2011) lme4: linear mixed-effects models using S4 classes. http://cran.r-project.org/web/packages/lme4/index.html
  3. Beissinger SR, Westphal MI (1998) On the use of demographic models of population viability in endangered species management. J Wildl Manage 62:821–841CrossRefGoogle Scholar
  4. Bodey TW, McDonald RA, Sheldon RD, Bearhop S (2011) Absence of effects of predator control on nesting success of northern lapwings Vanellus vanellus: implications for conservation. Ibis 153:543–555CrossRefGoogle Scholar
  5. Bolton M, Tyler G, Smith K, Bamford R (2007) The impact of predator control on lapwing Vanellus vanellus breeding success on wet grassland nature reserves. J Appl Ecol 44:534–544CrossRefGoogle Scholar
  6. Both C, Piersma T, Roodbergen SP (2005) Climatic change explains much of the 20th century advance in laying date of northern lapwing Vanellus vanellus in The Netherlands. Ardea 93:79–88Google Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  8. Choquet R, Lebreton J-D, Gimenez O, Reboulet A-M, Pradel R (2009) U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32:1071–1074CrossRefGoogle Scholar
  9. Cooch E, White G (2011) Program MARK: a gentle introduction (10th Edition). http://www.phidot.org/software/mark/docs/book/
  10. Dolgushin IA (1962) Sociable Lapwing—Vanellus gregarius. In: Dolgushin IA (ed) Birds of Kazakhstan. Acad Sci Kazakh SSR, Alma-Ata, pp 94–101Google Scholar
  11. Donald PF, Evans AD, Muirhead LB, Buckingham DL, Kirby WB, Schmitt SIA (2002) Survival rates, causes of failure and productivity of skylark Alauda arvensis nests on lowland farmland. Ibis 144:652–664CrossRefGoogle Scholar
  12. Eichhorn G, Khrokov VV (2002) Decline in breeding sociable plover Chettusia gregaria in the steppes of Naurzum and Korgalzhyn, Kazakhstan. Sandgrouse 24:22–27Google Scholar
  13. Farnsworth GL, Simons TR (2001) How many baskets? Clutch sizes that maximize annual fecundity of multiple-brooded birds. Auk 118:973–982Google Scholar
  14. Farnsworth GL, Simons TR (2005) Relationship between Mayfield nest-survival estimates and seasonal fecundity: a cautionary reply. Auk 122:1000–1001CrossRefGoogle Scholar
  15. Fletcher K, Warren P, Baines D (2005) Impact of nest visits by human observers on hatching success in lapwings Vanellus vanellus: a field experiment. Bird Study 52:221–223CrossRefGoogle Scholar
  16. Galbraith H (1987) Marking and visiting lapwing Vanellus vanellus nests does not affect clutch survival. Bird Study 34:137–138CrossRefGoogle Scholar
  17. Gordienko NS (1991) Ecology and numbers of sociable lapwing in the Kustanai steppe. Ornitologiya 25:54–61Google Scholar
  18. Green RE (2002) Diagnosing causes of population declines and selecting remedial actions. In: Norris K, Pain DJ (eds) Conserving bird biodiversity: general principles and their application. Cambridge University Press, Cambridge, pp 139–156CrossRefGoogle Scholar
  19. Hoyt DF (1979) Practical methods of estimating volume and fresh weight of bird eggs. Auk 96:73–77Google Scholar
  20. Ibáñez-Álamo JD, Sanllorente O, Soler M (2012) The impact of researcher disturbance on nest predation rates: a meta-analysis. Ibis 154:5–14CrossRefGoogle Scholar
  21. Isaksson D, Wallander J, Larsson M (2007) Managing predation on ground-nesting birds: the effectiveness of nest exclosures. Biol Conserv 136:136–142CrossRefGoogle Scholar
  22. Kamp J, Sheldon RD, Koshkin MA, Donald PF, Biedermann R (2009) Post-Soviet steppe management causes pronounced synanthropy in the globally threatened sociable lapwing Vanellus gregarius. Ibis 151:452–463CrossRefGoogle Scholar
  23. Kamp J, Koshkin MA, Sheldon R (2010) Historic breeding of sociable lapwing (Vanellus gregarius) in Xinjiang. Chin Birds 1:70–73CrossRefGoogle Scholar
  24. Kamp J, Urazaliev R, Donald PF, Holzel N (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Conserv 144:2607–2614CrossRefGoogle Scholar
  25. Khrokov VV (1996) On the breeding biology of sociable lapwing Chettusia gregaria in the Naurzum state nature reserve. Russ Ornithol J 4:3–8Google Scholar
  26. King R, Brooks SP, Mazzetta C, Freeman SN, Morgan BJT (2008) Identifying and diagnosing population declines: a Bayesian assessment of lapwings in the UK. J R Stat Soc Ser C Appl Stat 57:609–632CrossRefGoogle Scholar
  27. Laake J, Rexstad E (2011) RMark—an alternative approach to building linear models in MARK. In: Cooch E, White G (eds) Program Mark: a gentle introduction. http://www.phidot.org/software/mark/docs/book/
  28. MacDonald MA, Bolton M (2008a) Predation of lapwing Vanellus vanellus nests on lowland wet grassland in England and Wales: effects of nest density, habitat and predator abundance. J Ornithol 149:555–563CrossRefGoogle Scholar
  29. MacDonald MA, Bolton M (2008b) Predation on wader nests in Europe. Ibis 150:54–73CrossRefGoogle Scholar
  30. Milsom TP (2005) Decline of northern lapwing Vanellus vanellus breeding on arable farmland in relation to the loss of spring tillage. Bird Study 52:297–306CrossRefGoogle Scholar
  31. Parish DMB, Thompson PS, Coulson JC (1997) Mating systems in the lapwing Vanellus vanellus. Ibis 139:138–143CrossRefGoogle Scholar
  32. Peach WJ, Thompson PS, Coulson JC (1994) Annual and long-term variation in the survival rates of British lapwings Vanellus vanellus. J Anim Ecol 63:60–70CrossRefGoogle Scholar
  33. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  34. Rickenbach O, Gruebler MU, Schaub M, Koller A, Naef-Daenzer B, Schifferli L (2011) Exclusion of ground predators improves northern lapwing Vanellus vanellus chick survival. Ibis 153:531–542CrossRefGoogle Scholar
  35. Robinson S, Milner-Gulland EJ (2003) Political change and factors limiting numbers of wild and domestic ungulates in Kazakhstan. Hum Ecol 31:87–110CrossRefGoogle Scholar
  36. Roodbergen M, van der Werf B, Hötker H (2012) Revealing the contributions of reproduction and survival to the Europe-wide decline in meadow birds: review and meta-analysis. J Ornithol 153:53–74CrossRefGoogle Scholar
  37. Rotella JJ, Dinsmore SJ, Shaffer TL (2004) Modeling nest-survival data: a comparison of recently developed methods that can be implemented in MARK and SAS. Anim Biodiv Conserv 27:187–204Google Scholar
  38. Sabatier R, Doyen L, Tichit M (2010) Modelling trade-offs between livestock grazing and wader conservation in a grassland agroecosystem. Ecol Model 221:1292–1300CrossRefGoogle Scholar
  39. Sandercock BK (2003) Estimation of survival rates for wader populations: a review of mark-recapture methods. Wader Study Group Bull 100:163–174Google Scholar
  40. Sheldon RD, Chaney K, Tyler GA (2007) Factors affecting nest survival of northern lapwings Vanellus vanellus in arable farmland: an agri-environment scheme prescription can enhance nest survival. Bird Study 54:168–175CrossRefGoogle Scholar
  41. Sheldon RD, Koshkin MA, Kamp J, Dereliev S, Donald PF, Jbour S (2012) International single species action plan for the conservation of the sociable lapwing Vanellus gregarius. CMS technical series, AEWA technical series. Bonn, GermanyGoogle Scholar
  42. Shevchenko VL (1998) The situation of the sociable lapwing north of the Caspian Sea. Inf Mater Russn Wader Study Group 11:45–47Google Scholar
  43. Smith RK, Pullin AS, Stewart GB, Sutherland WJ (2010) Is nest predator exclusion an effective strategy for enhancing bird populations? Biol Conserv 144:1–10CrossRefGoogle Scholar
  44. Teunissen W, Schekkerman H, Willems F, Majoor F (2008) Identifying predators of eggs and chicks of lapwing Vanellus vanellus and Black-tailed Godwit Limosa limosa in the Netherlands and the importance of predation on wader reproductive output. Ibis 150:74–85CrossRefGoogle Scholar
  45. Thompson PS, Baines D, Coulson JC, Longrigg G (1994) Age at first breeding, philopatry and breeding site fidelity in the lapwing Vanellus vanellus. Ibis 136:474–484CrossRefGoogle Scholar
  46. Watson M, Wilson JM, Koshkin M, Sherbakov B, Karpov F, Gavrilov A, Schielzeth H, Brombacher M, Collar NJ, Cresswell W (2006) Nest survival and productivity of the critically endangered sociable lapwing Vanellus gregarius. Ibis 148:489–502CrossRefGoogle Scholar
  47. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S138CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  • Rob D. Sheldon
    • 1
  • Johannes Kamp
    • 1
    • 2
  • Maxim A. Koshkin
    • 3
    • 4
  • Ruslan S. Urazaliev
    • 3
  • Timur K. Iskakov
    • 3
  • Rob H. Field
    • 1
  • Albert R. Salemgareev
    • 3
  • Valery V. Khrokov
    • 3
  • Vasily A. Zhuly
    • 3
  • Sergey L. Sklyarenko
    • 3
  • Paul F. Donald
    • 1
    Email author
  1. 1.Conservation Science DepartmentRSPBSandyUK
  2. 2.Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  3. 3.Association for the Conservation of Biodiversity of Kazakhstan (ACBK)AstanaKazakhstan
  4. 4.School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations