Journal of Ornithology

, Volume 154, Issue 1, pp 239–249 | Cite as

Stable isotopes reveal variable foraging behaviour in a colony of the Imperial Shag Phalacrocorax atriceps: differences between ages, sexes and years

  • Andreas MichalikEmail author
  • Rona A. R. McGill
  • Hendrika J. van Noordwijk
  • Juan F. Masello
  • Robert W. Furness
  • Till Eggers
  • Petra Quillfeldt
Original Article


Stable isotope analysis (SIA) is used in the study of trophic relationships in food webs, being also a powerful tool for the study of intraspecific diet segregation. Unlike short-term data from most conventional diet studies, SIA can also provide information about times when seabirds stay out at sea and are thus not easily accessible. Imperial Shags Phalacrocorax atriceps are resident seabirds showing sexual dimorphism in body size. Previous studies showed strong intra-species dietary segregation between male and female Imperial Shags during the breeding season. Between 2006 and 2009 at New Island in the Falkland Islands/Islas Malvinas (southwest Atlantic), we investigated if intraspecific differences were also present between age-groups, namely adults and immature males. We further tested if differences existed over the year, particularly during the non-breeding season. Finally, we tested if differences were consistent among studied years. We found no differences in δ13C values between immature and adult males. However, lower δ15N values indicated feeding at lower trophic levels for immatures. This might be explained by poorer hunting abilities of young, inexperienced birds, compared to adults. In both the breeding and non-breeding seasons, differences among years in both δ13C and δ15N suggest that the foraging behaviour of the shags differed among years in terms of spatial distribution and trophic level. Males consistently foraged on a higher trophic level than females and had lower δ13C values, which is in line with the use of foraging areas further offshore.


Diet Imperial Shag Phalacrocorax atriceps Patagonian shelf Stable isotopes 


Stabile Isotope zeigen variables Ernährungsverhalten in einer Kolonie von Blauaugenscharben Phalacrocorax atriceps : Unterschiede zwischen Altersgruppen, Geschlechtern und Jahren

Analyse von stabilen Isotopen wird häufig in der Untersuchung von Nahrungsnetzen angewendet, kann aber auch eine Methode sein, intraspezifische Ernährungsunterschiede aufzudecken. Im Gegensatz zu den meisten Studien mit konventionellen Methoden können durch die Analyse stabiler Isotopen zudem Aussagen über Zeiträume getroffen werden, die Seevögel auf See verbringen und daher für Forscher schwer zugänglich sind. Blauaugenscharben Phalacrocorax atricpes sind residente Seevögel mit ausgeprägtem Sexualdimorphismus. Bisherige Studien zeigten starke intraspezifische Unterschiede zwischen männlichen und weiblichen Brutvögeln. In einer Kolonie auf den Falklandinseln wurde zwischen 2006 und 2009 untersucht, ob sich auch intraspezifische Ernährungsunterschiede zwischen immaturen und adulten Männchen nachweisen lassen. Außerdem wurde getestet, ob die Unterschiede auch außerhalb der Brutzeit Bestand haben. Schließlich wurden die drei Untersuchungsjahre verglichen. Zwischen den Altersgruppen konnten keine Unterschiede in den δ13C-Werten gefunden werden, jedoch hatten Proben immaturer Männchen geringere δ15N-Werte. Dies deutet bei den immaturen Männchen auf kleinere Beutetiere hin, was durch deren schlechtere Jagdfähigkeiten erklärt werden kann. Sowohl innerhalb als auch außerhalb der Brutzeit sowie zwischen den Jahren wurden Unterschiede zwischen den δ13C- und den δ15N-Werten gefunden. Dies zeigt, dass intraspezifische Ernährungsunterschiede auch außerhalb der Brutzeit bestehen bleiben und sich die Lage der Jagdgebiete sowie die Zusammensetzung der Nahrung von Jahr zu Jahr ändern können. Männchen erbeuten überwiegend größere Beutetiere als Weibchen. Sie weisen niedrigere δ13C-Werte als Weibchen auf und jagen küstenferner nach Nahrung.



We wish to thank to the New Island Conservation Trust, Ian, Maria and Georgina Strange and Dan Birch who facilitated fieldwork. Financial support for fieldwork came from DFG-German Research Foundation, (Qu 148/1-ff) and DAAD—the German Academic Exchange Service. Fieldwork at New Island was approved by the Falkland Islands Government (Environmental Planning Office). Funding for the stable isotope work was provided by the Natural Environment Research Council, UK.


  1. Agnew DJ, Baranowski R, Beddington JR, des Clers S, Nolan CP (1998) Approaches to assessing stocks of Loligo gahi around the Falkland Islands. Fish Res 35:155–169CrossRefGoogle Scholar
  2. Bearhop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164CrossRefGoogle Scholar
  3. Casaux R, Ramon A (2002) The diet of the South Georgia shag Phalacrocorax georgianus at South Orkney Islands in five consecutive years. Polar Biol 25:557–561Google Scholar
  4. Casaux R, Favero M, Silva P, Baroni A (2001) Sex differences in diving depths and diet of Antarctic Shags at the South Shetland Islands. J Field Ornithol 72:22–29Google Scholar
  5. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15 N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453CrossRefGoogle Scholar
  6. Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a toll to investigate their foraging areas in the Southern Ocean. Mar Ecolog Prog Ser 329:281–287CrossRefGoogle Scholar
  7. Cherel Y, Hobson KA, Hassani S (2005) Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiol Biochem Zool 78:106–115PubMedCrossRefGoogle Scholar
  8. Cook TR, Cherel Y, Bost C, Tremblay Y (2007) Chick-rearing Crozet shags (Phalacrocorax melanogenis) display sex-specific foraging behaviour. Antarct Sci 19:55–63Google Scholar
  9. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  10. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  11. Favero M, Casaux R, Silva P, Barrera-Oro E, Coria N (1998) The diet of the Antarctic Shag during summer at Nelson Island, Antarctica. Condor 100:112–118CrossRefGoogle Scholar
  12. Finney SK, Wanless S, Harris MP (1999) The effect of weather conditions on the feeding behaviour of a diving bird, the Common Guillemot Uria aalge. J Avian Biol 30:23–30CrossRefGoogle Scholar
  13. Forero MG, Hobson KA, Bortolotti GR, Donazar JA, Bertellotti M, Blanco G (2002) Food resource utilisation by the Magellanic penguin evaluated through stable-isotope analysis: segregation by sex and age and influence on offspring quality. Mar. Ecol Progr Ser 234:289–299CrossRefGoogle Scholar
  14. Forero MG, Tella JL, Hobson KA, Bertellotti M, Blanco G (2003) Conspecific food competition explains variability in colony size: a test in Magellanic Penguins. Ecology 83:3466–3475CrossRefGoogle Scholar
  15. Forero MG, Gonzalez-Solis J, Hobson KA, Doncazar JA, Bertellotti M, Blanco G, Bortolotti GR (2005) Stable isotopes reveal trophic segregation by sex and age in the southern giant petrel in two different food webs. Mar Ecol Progr Ser 296:107–113CrossRefGoogle Scholar
  16. France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Progr Ser 124:307–312CrossRefGoogle Scholar
  17. Hobson KA (1995) Reconstructing avian diets using stable-carbon and nitrogen isotope analysis of egg components: patterns of isotopic fractionation and turnover. Condor 97:752–762CrossRefGoogle Scholar
  18. Hobson KA, Clark RG (1992a) Assessing avian diets using stable isotopes I. Turnover of 13C in tissues. Condor 94:181–188CrossRefGoogle Scholar
  19. Hobson KA, Clark RG (1992b) Assessing avian diets using stable isotopes II. Factors influencing diet tissue fractionation. Condor 94:189–197CrossRefGoogle Scholar
  20. Hobson KA, Clark RG (1993) Turnover of 13C in cellular and plasma reactions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110:638–641CrossRefGoogle Scholar
  21. Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786–798CrossRefGoogle Scholar
  22. Kato A, Nishiumi I, Naito Y (1996) Sexual differences in the diet of king cormorants at Macquarie Island. Polar Biol 16:75–77Google Scholar
  23. Limmer B, Becker PH (2009) Improvement in chick provisioning with parental experience in a seabird. Anim Behav 77:1095–1101CrossRefGoogle Scholar
  24. Love R, Webbon C, Glue DE, Harris S (2000) Changes in the food of British Barn Owls (Tyto alba) between 1974 and 1997. Mammal Rev 30:107–129CrossRefGoogle Scholar
  25. Masello JF, Mundry R, Poisbleau M, Demongin L, Voigt CC, Wikelski M, Quillfeldt P (2010) Diving seabirds share foraging space and time within and among species. Ecosphere 1:art19CrossRefGoogle Scholar
  26. Michalik A, McGill RAR, Furness RW, Eggers T, van Noordwijk HJ, Quillfeldt P (2010a) Black and white—does melanin change the bulk carbon and nitrogen isotope values of feathers? Rapid Commun Mass Spectrom 24:875–878PubMedCrossRefGoogle Scholar
  27. Michalik A, van Noordwijk HJ, Brickle P, Eggers T, Quillfeldt P (2010b) The diet of Imperial Shag Phalacrocorax atriceps at a colony on New Island, Falkland/Malvinas Islands combining different sampling techniques. Polar Biol 33:1537–1546CrossRefGoogle Scholar
  28. Mizutani H, Fukuda M, Kabaya Y (1992) 13C enrichment and 15N enrichment factors of feathers of 11 species of adult birds. Ecology 73:1391–1395CrossRefGoogle Scholar
  29. Oppel S, Powell AN, Dickson DL (2008) Timing and distance of king eider migration and winter movements. Condor 110:296–305Google Scholar
  30. Pedrocchi V, Oro D, Gonzalez-Solis J (1996) Differences between diet of adult and chick Audouin’s Gulls Larus audouinii at the Chafarinas Islands, SW Mediterranean. Ornis Fenn 73:124–130Google Scholar
  31. Phillips RA, McGill RAR, Dawson DA, Bearhop S (2011) Sexual segregation in distribution, diet and trophic level of seabirds: insights from stable isotope analysis. Mar Biol 158:2199–2208CrossRefGoogle Scholar
  32. Quillfeldt P (2002) Seasonal and annual variation in the diet of breeding and non-breeding Wilson’s storm-petrels on King George Island, South Shetland Islands. Polar Biol 25:216–221Google Scholar
  33. Quillfeldt P, Strange IJ, Masello JF (2007) Sea surface temperatures and behavioural buffering capacity in thin-billed prions Pachyptila belcheri: breeding success, provisioning and chick begging. J Avian Biol 38:298–308Google Scholar
  34. Quillfeldt P, Bugoni L, McGill RAR, Masello JF, Furness RW (2008a) Differences in stable isotopes in blood and feathers of seabirds are consistent across species, age and latitude: implications for food web studies. Mar Biol 155:593–598CrossRefGoogle Scholar
  35. Quillfeldt P, McGill RAR, Masello JF, Weiss F, Strange IJ, Brickle P, Furness RW (2008b) Stable isotope analysis reveals sexual and environmental variability and individual consistency in foraging of thin-billed prions. Mar Ecol Progr Ser 373:137–148CrossRefGoogle Scholar
  36. Quillfeldt P, McGill RAR, Masello JF, Poisbleau M, van Noordwijk H, Demongin L, Furness RW (2009) Differences in the stable isotope signatures of seabird egg membrane and albumen—implications for non-invasive studies. Rapid Commun Mass Spectrom 23:3632–3636PubMedCrossRefGoogle Scholar
  37. Quillfeldt P, Schroff S, van Noordwijk H, Michalik A, Ludynia K, Masello JF (2011) Flexible diving behaviour of a sexually dimorphic seabird: large males do not always dive deep. Mar Ecol Progr Ser 428:271–287CrossRefGoogle Scholar
  38. Rutz C, Whittingham MJ, Newton I (2006) Age-dependent diet choice in an avian top predator. Proc R Soc Lond B 273:579–586CrossRefGoogle Scholar
  39. R Development Core Team 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0,
  40. Tierney M, Southwell C, Emmerson LM, Hindell MA (2008) Evaluating and using stable-isotope analysis to infer diet composition and foraging ecology of Adelie penguins Pygoscelis adeliae. Mar Ecol Progr Ser 355:297–307CrossRefGoogle Scholar
  41. Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15N and 13C abundances in the Antarctic ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea Res Part I 34:829–841CrossRefGoogle Scholar
  42. Weiss F, Furness RW, McGill RAR, Strange IJ, Masello JF, Quillfeldt P (2009) Trophic segregation of Falkland Islands seabirds—insights from stable isotope analysis. Polar Biol 32:1753–1763CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  • Andreas Michalik
    • 1
    • 2
    Email author
  • Rona A. R. McGill
    • 3
  • Hendrika J. van Noordwijk
    • 1
  • Juan F. Masello
    • 1
    • 4
  • Robert W. Furness
    • 5
  • Till Eggers
    • 2
  • Petra Quillfeldt
    • 1
    • 4
  1. 1.Max-Planck-Institut für OrnithologieVogelwarte RadolfzellRadolfzellGermany
  2. 2.Department of Biology/Chemistry, Experimental Ecology GroupUniversity of OsnabrückOsnabrückGermany
  3. 3.Scottish Universities Environmental Research CentreGlasgowUK
  4. 4.Department of Animal Ecology and BiodiversityJustus Liebig University GiessenGiessenGermany
  5. 5.College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK

Personalised recommendations