Journal of Ornithology

, Volume 154, Issue 1, pp 73–82

The relationship between brood size and prey selection in a Peregrine Falcon population located in a strategic region on the Western European Flyway

  • Iñigo Zuberogoitia
  • José Enrique Martínez
  • José Antonio González-Oreja
  • José Francisco Calvo
  • Jabi Zabala
Original Article

Abstract

In raptors, brood size seems to be closely related to the size of prey brought to the nest, the delivery rate and the degree of parental effort. In the case of Peregrine Falcons (Falco peregrinus), any increase in the size of prey is considered to be linked to the increased role of the female in hunting. We investigated the possible effects of differences between sexes in prey composition on the brood size of a Peregrine Falcon population in northern Spain during 1998–2010. The study area was located on the Gulf of Biscay, in the middle of the Western European Flyway, hence a wide range of prey species were available during the breeding season. We monitored a total of 320 Peregrine nests, which produced 603 fledglings (average brood size = 2.67) and identified 2,832 prey, from 128 different bird species. Our results indicate that brood size was negatively related to bad weather (e.g. rainfall in April), but not with the body mass of the prey species delivered to the nest. There were no significant differences in body mass between attacked versus captured prey, nor was mass affected by the sex of the attacking Peregrine, and gender had no significant effect on the probability of a successful capture. Therefore, males and females hunted prey species of similar body size. Our data suggest that prey size is not related to the number of fledglings, although this may play an important role; Peregrines can compensate by hunting for more or larger prey.

Keywords

Body mass Brood size Falco peregrinus Peregrine Falcon Prey selection Parental effort 

Zusammenfassung

Die Beziehung zwischen Brutgröße und Beutewahl in einer Wanderfalkenpopulation in einer strategischen Region im westeuropäischen Zugweg

Bei Greifvögeln steht die Brutgröße anscheinend in enger Beziehung zur Größe der ins Nest eingetragenen Beute, der Fütterrate und dem Ausmaß der elterlichen Brutfürsorge. Im Fall von Wanderfalken (Falco peregrinus) wird jegliche Zunahme der Beutegröße mit der verstärkten Rolle des Weibchens bei der Jagd in Verbindung gebracht. Wir haben die möglichen Effekte von Geschlechtsunterschieden in der Zusammensetzung der Beute auf die Brutgröße in einer Wanderfalkenpopulation in Nordspanien von 1998 bis 2010 untersucht. Das Untersuchungsgebiet lag am Golf von Biskaya, mitten im westeuropäischen Zugweg, weshalb während der Brutsaison eine große Auswahl von Beutearten verfügbar war. Wir haben insgesamt 320 Wanderfalkennester überwacht, aus denen 603 Jungvögel ausflogen (durchschnittliche Brutgröße = 2,67), und 2832 Beutetiere identifiziert, die 128 verschiedenen Vogelarten angehörten. Unsere Ergebnisse deuten darauf hin, dass die Brutgröße in negativer Beziehung zu schlechtem Wetter (z.B. Regenfall im April) stand, jedoch in keiner Beziehung zur Körpermasse der ins Nest eingetragenen Beutearten. Die Körpermasse attackierter und gefangener Beute unterschied sich nicht signifikant und hing auch nicht mit dem Geschlecht des angreifenden Falken zusammen, und das Geschlecht eines Falken hatte keinen signifikanten Einfluss auf die Wahrscheinlichkeit eines erfolgreichen Fangs. Daher jagten Männchen und Weibchen Beutearten ähnlicher Körpergröße. Unsere Daten deuten darauf hin, dass die Beutegröße nicht mit der Anzahl der Flügglinge zusammenhängt, obwohl dies eine wichtige Rolle spielen könnte; Wanderfalken können kompensieren, indem sie mehr oder größere Beute jagen.

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46Google Scholar
  2. Anderson MJ, Gorley RN, Clarke KR (2008) Permanova+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UKGoogle Scholar
  3. Bionda R, Brambilla M (2012) Rainfall and landscape features affect productivity in an alpine population of Eagle Owl Bubo bubo. J Ornithol 153:167–171CrossRefGoogle Scholar
  4. Castellanos A, Arguelles C, Salinas F, Rodriguez A, Ortega-Rubio A (2006) Diet of breeding peregrine falcons at a coastal lagoon, Baja California Sur, Mexico. J Raptor Res 40:241–244CrossRefGoogle Scholar
  5. Collins SL (2001) Long-term research and the dynamics of bird populations and communities. Auk 118:583–588Google Scholar
  6. Crespo A, Iraeta I (2012) Oficina de Anillamiento de Aranzadi, informe 2011. Aranzadiana 132:232–269Google Scholar
  7. Daan S (1982) Timing of vole hunting in aerial predators. Mamm Rev 12:169–181CrossRefGoogle Scholar
  8. Dawson RD, Mossop DH, Boukall BA (2011) Prey use and selection in relation to reproduction by peregrine falcons breeding along the Yukon River, Canada. J Raptor Res 45:27–37CrossRefGoogle Scholar
  9. Dekker D, Taylor R (2005) A change in foraging success and cooperative hunting by a breeding pair of peregrine falcons and their fledglings. J Raptor Res 39:394–403Google Scholar
  10. Elkins N (2004) Weather and bird behaviour. Poyser, LondonGoogle Scholar
  11. Gail M, Krickeberg K, Samet J, Tsiatis A, Wong W (eds) (2007) Statistics for biology and health. Springer, New YorkGoogle Scholar
  12. Galarza A (1997) Distribución espacio-temporal de la avifauna en el País Vasco. PhD thesis, Basque Country University, LeioaGoogle Scholar
  13. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:9Google Scholar
  14. Jaksić FM, Braker HE (1983) Food-niche relationships and guild structure of diurnal birds of prey: competition versus opportunism. Can J Zool 61:2230–2241CrossRefGoogle Scholar
  15. Jenkins AR (2000a) Variation in the quality of parental care at falcon nests in South Africa as evidence for postulated differences in food availability. Ardea 88:17–32Google Scholar
  16. Jenkins AR (2000b) Hunting mode and success of African Peregrines Falco peregrinus minor: does nesting habitat quality affect foraging efficiency? Ibis 142:235–246Google Scholar
  17. Jenkins AR, Avery GM (1999) Diets of breeding Peregrine and Lanner Falcons in South Africa. J Raptor Res 33:190–206Google Scholar
  18. Loidi J (1987) El País Vasco. In: Pinado-Lorca M, Rivas-Martínez S (eds) La Vegetación en España. Universidad de Alcalá de Henares, MadridGoogle Scholar
  19. López-López P, Verdejo J, Barba E (2009) The role of pigeon consumption in the population dynamics and breeding performance of a peregrine falcon (Falco peregrinus) population: conservation implications. Eur J Wildl Res 55:125–132CrossRefGoogle Scholar
  20. Martínez JA, Zuberogoitia I (2001) The response of the Eagle Owl (Bubo bubo) to an outbreak of the rabbit haemorrhagic disease. J Ornithol 142:204–211CrossRefGoogle Scholar
  21. Newton I (1979) Population ecology of raptors. Buteo, VermillionGoogle Scholar
  22. Newton I (1986) The Sparrowhawk. Poyser, CaltonGoogle Scholar
  23. Olsen J (1992) Does the breeding system of some raptors help to maintain a buffer against food shortage? Aust Raptor Assoc News 13:66–67Google Scholar
  24. Olsen P, Olsen J (1992) Does rain hamper hunting by breeding raptors? Emu 92:184–187CrossRefGoogle Scholar
  25. Olsen J, Tucker AD (2003) A brood-size manipulation experiment with Peregrine Falcons, Falco peregrinus, near Camberra. Emu 103:127–132CrossRefGoogle Scholar
  26. Olsen P, Doyle V, Boulet M (1998) Variation in male provisioning in relation to brood size of peregrine falcons Falco peregrinus. Emu 98:297–304CrossRefGoogle Scholar
  27. Palmer AG, Nordmeyer DL, Roby DD (2004) Nestling provisioning rates of peregrine falcons in interior Alaska. J Raptor Res 38:9–18Google Scholar
  28. Ratcliffe DA (1993) The Peregrine Falcon. Poyser, LondonGoogle Scholar
  29. Redpath SM, Thirgood SJ (1997) Birds of prey and red grouse. H.M. Stationery Office, LondonGoogle Scholar
  30. Rosenfield RN, Schneider JW, Papp JM, Seegar WS (1995) Prey of Peregrine Falcons breeding in west Greenland. Condor 97:763–770CrossRefGoogle Scholar
  31. Rull V, Vegas-Vilarrúbia T (2011) What is long-term in ecology? Trends Ecol Evol 26:3–4PubMedCrossRefGoogle Scholar
  32. Sergio F (2003) From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim Behav 66:1109–1117CrossRefGoogle Scholar
  33. Simmons RE (2002) Siblicide provides food beneficts for raptor chicks: re-evaluating brood manipulation studies. Anim Behav 64:19–24CrossRefGoogle Scholar
  34. Steenhof K (1987) Assessing raptor reproductive success and productivity. In: Giron Pendleton BA, Millsap BA, Cline KW, Bird DM (eds) Raptor management techniques manual. National Wildlife Federation, Washington, DC, pp 157–170Google Scholar
  35. Treleaven RB (1977) Peregrine. The private life of the Peregrine Falcon. Headline, PenzanceGoogle Scholar
  36. Verdejo J, López-López P (2008) Long-term monitoring of a Peregrine Falcon population: size, breeding performance and nest-site characteristics. Ardeola 55:87–96Google Scholar
  37. Zuberogoitia I (2005) Halcón peregrino—Falco peregrinus. In: Carrascal LM, Salvador A (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/
  38. Zuberogoitia I, Torres JJ (1998) Aves Acuáticas de Bizkaia. Temas Vizcainos BBK, BilbaoGoogle Scholar
  39. Zuberogoitia I, Torres JJ (2002) Pájaros de Bizkaia. Temas Vizcainos BBK, BilbaoGoogle Scholar
  40. Zuberogoitia I, Ruiz Moneo JF, Torres JJ (eds) (2002a) El Halcón Peregrino. Dpt Agricultura, Diputación Foral de Bizkaia, BilbaoGoogle Scholar
  41. Zuberogoitia I, Iraeta A, Martínez JA (2002b) Kleptoparasitism by Peregrine Falcon on Carrion Crow. Ardeola 49:103–104Google Scholar
  42. Zuberogoitia I, Martínez JA, Azkona A, Martínez JE, Castillo I, Zabala J (2009) Using recruitment age, territorial fidelity and dispersal as decisive tools in the conservation and management of peregrine falcon (Falco peregrinus) populations: the case of a healthy population in Northern Spain. J Ornithol 150:95–101CrossRefGoogle Scholar
  43. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New YorkGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  • Iñigo Zuberogoitia
    • 1
  • José Enrique Martínez
    • 2
    • 4
  • José Antonio González-Oreja
    • 3
  • José Francisco Calvo
    • 4
  • Jabi Zabala
    • 5
  1. 1.Estudios Medioambientales IcarusLogronoSpain
  2. 2.Bonelli′s Eagle Study and Conservation GroupMurciaSpain
  3. 3.Sección de VertebradosSociedad de Ciencias Naturales de SestaoSestaoSpain
  4. 4.Departamento de Ecología e HidrologíaUniversidad de MurciaMurciaSpain
  5. 5.Arrigorriaga, BizkaiaSpain

Personalised recommendations