Journal of Ornithology

, Volume 154, Issue 1, pp 35–40 | Cite as

Do different subspecies of Black-tailed Godwit Limosa limosa overlap in Iberian wintering and staging areas? Validation with genetic markers

  • Ricardo J. Lopes
  • José A. Alves
  • Jennifer A. Gill
  • Tómas G. Gunnarsson
  • Jos C. E. W. Hooijmeijer
  • Pedro M. Lourenço
  • Jose A. Masero
  • Theunis Piersma
  • Peter M. Potts
  • Bruno Rabaçal
  • Sandra Reis
  • Juan M. Sánchez-Guzman
  • Francisco Santiago-Quesada
  • Auxiliadora Villegas
Original Article

Abstract

Resolving the migratory connectivity (identifying non-breeding grounds) of migrating bird populations that are morphologically similar is crucial for an understanding of their population dynamics and ultimately their conservation. Such is the case in Black-tailed Godwits Limosa limosa, where the Iceland-breeding subspecies islandica shows overlap during the non-breeding season with the continental-Europe-breeding limosa. On the basis of variation in the control region of mitochondrial DNA, it was already shown that there is a clear geographic structure in their phylogeography and a clear discrimination between the haplotypes of the two subspecies. We can thus assign subspecies of non-breeding individuals on the basis of a molecular assay. Here we validated this approach using samples of 113 birds with known breeding origin, and on the basis of haplotype variation, all birds were properly assigned to each subspecies. We then tested for overlap during non-breeding season using a sample of 278 birds from an Iberian wintering and staging area, the inland rice fields in southwest Iberia (Extremadura, Spain). We showed that even in this inland area, 6.5 % of the birds belonged to islandica subspecies, thus demonstrating the usefulness of genetic markers as an alternative or supplementary method to the most common approach, individual colour-ringing.

Keywords

Waders Limosa Migratory connectivity Conservation genetics 

Zusammenfassung

Überschneiden sich verschiedene Unterarten der UferschnepfeLimosa limosain den iberischen Winter- und Rastgebieten? Eine Bestätigung anhand genetischer Marker

Die Aufklärung der Zugkonnektivität (Ermittlung der Überwinterungsgebiete) von morphologisch ähnlichen Zugvogelpopulationen ist entscheidend für das Verständnis ihrer Populationsdynamik und somit letzten Endes auch für ihren Schutz. Ein solcher Fall ist die Uferschnepfe Limosa limosa, bei der die in Island brütende Unterart islandica außerhalb der Brutzeit mit der in Kontinentaleuropa brütenden Nominatform limosa zusammentrifft. Anhand der Variation in den Kontrollregionen mitochondrialer DNA konnte bereits gezeigt werden, dass die beiden Unterarten eine klare geografische Struktur in ihrer Phylogeografie und eine deutliche Trennung zwischen den Haplotypen aufweisen. Somit kann man mit molekularen Methoden auch außerhalb der Brutzeit Individuen einer Unterart zuordnen. Hier prüften wir diesen Ansatz anhand einer Stichprobe von 113 Vögeln bekannter Brutherkunft, von denen alle auf der Grundlage der Haplotyp-Variation korrekt der Unterart zugeordnet werden konnten. Anschließend testeten wir mittels einer Stichprobe von 278 Vögeln aus einem iberischen Rast- und Überwinterungsgebiet - den im Inland gelegenen Reisfeldern im Südwesten der Iberischen Halbinsel (Extremadura, Spanien) - auf eine Überlappung außerhalb der Brutzeit. Es zeigte sich, dass selbst in dieser Binnenlandregion 6,5 % der Vögel zur Unterart islandica gehörten, wodurch die Eignung genetischer Marker als alternative oder zusätzliche Methode zur individuellen Farbberingung als dem verbreitetsten Ansatz belegt wird.

References

  1. Alves JA, Lourenço PM, Piersma T, Sutherland WJ, Gill JA (2010) Population overlap and habitat segregation in wintering Black-tailed Godwits Limosa limosa. Bird Study 57:381–391CrossRefGoogle Scholar
  2. BirdLife International (2010) Species factsheet: Limosa limosa. http://www.birdlife.org
  3. Boulet M, Norris DR (2006) The past and present of migratory connectivity. Ornit Monog 61:1–13CrossRefGoogle Scholar
  4. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1660PubMedCrossRefGoogle Scholar
  5. Gill JA, Langston RHW, Alves JA, Atkinson PW, Bocher P, Vieira NC, Crockford NJ, Gélinaud G, Groen N, Gunnarsson TG, Hayhow B, Hooijmeijer J, Kentie R, Kleijjn D, Lourenço PM, Masero JA, Meunier F, Potts PM, Roodbergen M, Schekkerman H, Schroder J, Wymenga E, Piersma T (2007) Contrasting trends in two Black-tailed Godwit populations: a review of causes and recommendations. Wader Study Group Bull 114:43–50Google Scholar
  6. Gunnarsson TG, Gill JA, Atkinson PW, Gélinaud G, Potts PM, Croger RE, Gudmundsson GA, Appleton GF, Sutherland WJ (2006a) Population-scale drivers of individual arrival times in migratory birds. J Anim Ecol 75(5):1119–1127PubMedCrossRefGoogle Scholar
  7. Gunnarsson TG, Gill JA, Goodacre SL, Gelinaud G, Atkinson PW, Hewitt GM, Potts PM, Sutherland WJ (2006b) Sexing of Black-tailed Godwits Limosa limosa islandica: a comparison of behavioural, molecular, biometric and field-based techniques. Bird Study 53:193–198CrossRefGoogle Scholar
  8. Höglund J, Johansson T, Beintema A, Schekkerman H (2009) Phylogeography of the Black-tailed Godwit Limosa limosa: substructuring revealed by mtDNA control region sequences. J Ornithol 150(1):45–53CrossRefGoogle Scholar
  9. Kirby J, Scott D (2009) Black-tailed Godwit. In: Delany S, Scott D, Dodman T, Stroud D (eds) An atlas on wader populations in Africa and Western Eurasia. Wetlands International and International Wader Study Group, Kuala LumpurGoogle Scholar
  10. Lee JC, Tsai LC, Hwa PY, Chan CL, Huang A, Chin SC, Wang LC, Lin JT, Linacre A, Hsieh HM (2010) A novel strategy for avian species and gender identification using the CHD gene. Mol Cell Probes 24(1):27–31PubMedCrossRefGoogle Scholar
  11. Lopes RJ, Hortas F, Wennerberg L (2008) Geographical segregation in Dunlin Calidris alpina populations wintering along the East Atlantic migratory flyway—evidence from mitochondrial DNA analysis. Divers Distrib 14:732–741CrossRefGoogle Scholar
  12. Lourenço PM, Kentie R, Schroeder J, Alves JA, Groen NM, Hooijmeijer J, Piersma T (2010) Phenology, stopover dynamics and population size of migrating Black-tailed Godwits Limosa limosa limosa in Portuguese rice plantations. Ardea 98(1):35–42CrossRefGoogle Scholar
  13. Masero JA, Santiago-Quesada F, Sánchez-Guzmán JM, Abad-Goméz JM, Auxiliadora V, Albano N (2009) Geographical origin, return rates, and movements of the near-threatened Black-tailed Godwit Limosa limosa at a major stopover site of Iberia. Ardeola 56(2):253–258Google Scholar
  14. Masero JA, Santiago-Quesada F, Sánchez-Guzmán JM, Auxiliadora V, Abad-Goméz JM, Lopes RJ, Encarnação V, Corbacho C, Morán R (2011) Long lengths of stay, large numbers, and trends of the Black-tailed Godwit Limosa limosa in rice fields during spring migration. Bird Cons Int 21(1):12–24CrossRefGoogle Scholar
  15. Perez-Tris J, Telleria JL (2002) Migratory and sedentary blackcaps in sympatric non-breeding grounds: implications for the evolution of avian migration. J Anim Ecol 71:211–224Google Scholar
  16. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  17. Salomonsen F (1955) The evolutionary significance of bird migration. Biol Meddel 22:1–62Google Scholar
  18. Schroeder J, Lourenco PM, van der Velde M, Hooijmeijer J, Both C, Piersma T (2008) Sexual dimorphism in plumage and size in Black-tailed Godwits Limosa limosa limosa. Ardea 96(1):25–37CrossRefGoogle Scholar
  19. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83CrossRefGoogle Scholar
  20. Wink M (2006) Use of DNA markers to study bird migration. J Ornithol 147:234–244CrossRefGoogle Scholar
  21. Zar JH (2009) Biostatistical analysis, 5th edn. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  • Ricardo J. Lopes
    • 1
  • José A. Alves
    • 2
  • Jennifer A. Gill
    • 2
  • Tómas G. Gunnarsson
    • 3
  • Jos C. E. W. Hooijmeijer
    • 4
  • Pedro M. Lourenço
    • 4
    • 5
  • Jose A. Masero
    • 7
  • Theunis Piersma
    • 4
    • 6
  • Peter M. Potts
    • 8
  • Bruno Rabaçal
    • 1
  • Sandra Reis
    • 1
  • Juan M. Sánchez-Guzman
    • 7
  • Francisco Santiago-Quesada
    • 7
  • Auxiliadora Villegas
    • 7
  1. 1.CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do PortoVairãoPortugal
  2. 2.School of Biological SciencesUniversity of East AngliaNorwichUK
  3. 3.South Iceland Research CentreUniversity of IcelandHellaIceland
  4. 4.Animal Ecology Group, Centre for Ecological and Evolutionary Studies (CEES)University of GroningenGroningenThe Netherlands
  5. 5.CEAI, Centro de Estudos de Avifauna IbéricaÉvoraPortugal
  6. 6.Department of Marine EcologyRoyal Netherlands Institute for Sea Research (NIOZ)Den Burg, TexelThe Netherlands
  7. 7.Conservation Biology Research Group, ZoologyUniversity of ExtremaduraBadajozSpain
  8. 8.Solent Court CottageSouthamptonUK

Personalised recommendations