Advertisement

Journal of Ornithology

, Volume 153, Issue 4, pp 1127–1139 | Cite as

Maintenance of gene flow by female-biased dispersal of Black Grouse Tetrao tetrix in northern Sweden

  • Carolina CorralesEmail author
  • Jacob Höglund
Original Article

Abstract

Sex-biased dispersal is a common phenomenon in most birds. In general, males breed at or near their site of birth while most of the females disperse. We investigated the dispersal patterns and genetic structure of lekking Black Grouse Tetrao tetrix based on ten microsatellite loci. Data for 469 individuals from 25 localities spaced from 45 to 558 km apart revealed low levels of genetic differentiation and high connectivity among studied sites due to female-biased dispersal. The spatial distribution of the genetic variation did not follow an isolation by distance pattern neither for females nor for males. STRUCTURE identified three clusters of male individuals but without any geographical pattern. Only one cluster was identified for females. Several tests of sex-biased dispersal were executed. Most of them showed no difference between sexes, but the mean assignment index and F IS showed a statistically significant female-biased dispersal. Therefore, we consider that the northern Swedish Black Grouse population is a panmictic population. The amount of gene flow throughout time has been consistent with dispersal and with no strong effect of forest fragmentation in the region.

Keywords

Black Grouse Microsatellites Sex-biased dispersal Philopatry 

Zusammenfassung

Aufrechterhaltung des Genflusses durch Ausbreitung weiblicher Birkhühner Tetrao tetris in Nordschweden

Geschlechterunterschiede bei der Auswanderung aus dem Heimatterritorium und Ausbreitung gibt es bei den meisten Vogelarten. Üblicherweise brüten Männchen in der Nähe ihres Geburtsorts, während Weibchen vermehrt abwandern. Wir untersuchten Muster in der Verbreitung und die genetische Struktur im Lek balzender Birkhühner Tetrao tetrix anhand von zehn Mikrosatelliten-Loci. Daten von 469 Individuen aus 25 Gebieten, die zwischen 45 und 558 km voneinander entfernt lagen, zeigten geringe genetische Differenzierung und hohe Konnektivität zwischen den Gebieten, gewährleistet durch die Ausbreitung der Weibchen. Die räumliche Verteilung der genetischen Variation zeigte keine Isolation durch hohe Entfernungen, weder für Männchen noch für Weibchen. Das Programm STRUCTURE fand drei Cluster für männliche Individuen, die nicht mit geographischen Mustern übereinstimmten. Bei Weibchen konnte nur ein Cluster identifiziert werden. Wir führten verschiedene Tests für geschlechtsabhängige Verbreitung durch. Die meisten fanden keinen Unterschied zwischen den Geschlechtern, aber der ‘mean assignment index’ und FIS zeigten signifikant stärkere Ausbreitung der Weibchen. Daraus schließen wir, dass die nordschwedische Birkhuhn Population panmiktisch ist. Der genetische Austausch der Populationen konnte stets durch Verteilung weiblicher Individuen erklärt werden, während die Fragmentierung der Wälder in der Region keinen großen Einfluss gehabt zu haben scheint.

Notes

Acknowledgments

We thank Eleanor Jones and Robert Ekblom for their valuable comments on the manuscript. We are grateful to all hunters who collaborate with the collection of samples. This work was supported by the Swedish Research Council to J.H.; and the Stiftelsen för Zoologisk Forskning to C.C. C.C. has a PhD scholarship from the Fundación COLFUTURO and the AlBan program. This study complies with the current Swedish laws.

Supplementary material

10336_2012_844_MOESM1_ESM.doc (1.8 mb)
Supplementary material 1 (DOC 1,892 kb)

References

  1. Alatalo RV, Höglund J, Lundberg A (1991) Lekking in the black grouse—a test of male viability. Nature 352:155–156CrossRefGoogle Scholar
  2. Angelstam P, Lindström E, Widén P (1984) Role of predation in short-term population fluctuations of some birds and mammals in Fennoscandia. Oecologia 62:199–208CrossRefGoogle Scholar
  3. Arandjelovic M, Guschanski K, Schubert G, Harris TR, Thalmann O, Siedel H, Vigilant L (2009) Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol Ecol Resour 9:28–36PubMedCrossRefGoogle Scholar
  4. Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a sub-divided population. Heredity 56:409–415PubMedCrossRefGoogle Scholar
  5. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)Google Scholar
  6. Børset E (1973) Black grouse Lyrurus tetrix and capercaillie Tetrao urogallus brood habitats in a Norwegian spruce forest. Oikos 24:1–7CrossRefGoogle Scholar
  7. Bouzat JL, Lewin HA, Paige KN (1998) The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken. Am Nat 152:1–6PubMedCrossRefGoogle Scholar
  8. Broquet T, Johnson CA, Petit E, Thompson I, Burel F, Fryxell JM (2006) Dispersal and genetic structure in the American marten, Martes americana. Mol Ecol 15:1689–1697PubMedCrossRefGoogle Scholar
  9. Caizergues A, Ellison LN (2002) Natal dispersal and its consequences in black grouse Tetrao tetrix. Ibis 144:478–487CrossRefGoogle Scholar
  10. Caizergues A, Rätti O, Helle P, Rotell L, Ellison L, Rasplus JY (2003) Population genetic structure of male black grouse (Tetrao tetrix L.) in fragmented vs. continuous landscapes. Mol Ecol 12:2297–2305PubMedCrossRefGoogle Scholar
  11. Cheng HH, Crittenden LB (1994) Microsatellite markers for genetic mapping in the chicken. Poultry Sci 73:539–546CrossRefGoogle Scholar
  12. Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374PubMedGoogle Scholar
  13. Corander J, Waldmann P, Martinnen P, Sillanpää MJ (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:2363–2369PubMedCrossRefGoogle Scholar
  14. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  15. Dubey S, Brown GP, Madsen T, Shine R (2008) Male-biased dispersal in a tropical Australian snake (Stegonotus cucullatus, Colubridae). Mol Ecol 17:3506–3514PubMedCrossRefGoogle Scholar
  16. Earl DA (2009) Structure Harvester v0.3. Available from http://users.soe.ucsc.edu/~dearl/software/struct_harvest/
  17. Edenius L, Elmberg J (1996) Landscape level effects of modern forestry on bird communities in North Swedish boreal forest. Landsc Ecol 11:325–338CrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  19. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  20. Favre L, Balloux F, Goudet J, Perrin N (1997) Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proc R Soc Lond B 264:127–132CrossRefGoogle Scholar
  21. Fedy BC, Martin K, Ritland C, Young J (2008) Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Mol Ecol 17:1905–1917PubMedCrossRefGoogle Scholar
  22. Fenster CB, Vakemans X, Hardy OJ (2003) Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae). Evolution 57:995–1007PubMedGoogle Scholar
  23. Florin A-B, Höglund J (2007) Absence of population structure of turbot (Psetta maxima) in the Baltic Sea. Mol Ecol 16:115–126PubMedCrossRefGoogle Scholar
  24. Goudet J (1995) fstat Version 2.9.3.2.: a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  25. Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114PubMedCrossRefGoogle Scholar
  26. Hardy OJ, Vakemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83:145–154PubMedCrossRefGoogle Scholar
  27. Hardy OJ, Vakemans X (2002) SPAGEDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  28. Hartl DL, Clark AG (1997) Principles of population genetics, 4th edn. Sinauer, SunderlandGoogle Scholar
  29. Höglund J, Stöhr S (1997) A non-lekking population of black grouse Tetrao tetrix. J Avian Biol 28:184–187CrossRefGoogle Scholar
  30. Höglund J, Larsson JK, Jansman HAH, Segelbacher G (2007) Genetic variability in European black grouse (Tetrao tetrix). Conserv Genet 8:239–243CrossRefGoogle Scholar
  31. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  32. Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429PubMedCrossRefGoogle Scholar
  33. Kalinowski ST (2004) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol 5:187–189Google Scholar
  34. Kimura M, Weiss G (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576PubMedGoogle Scholar
  35. Kurhinen J, Danillov P, Gromtsev A, Helle P, Lindén H (2009) Patterns of black grouse, Tetrao tetrix distribution in northwestern Russia at the turn of the millennium. Folia Zool 58:168–172Google Scholar
  36. Kurki S, Helle P, Lindén H, Nikula A (1997) Breeding success of black grouse and capercaillie in relation to mammalian predator densities on two spatial scales. Oikos 79:301–310CrossRefGoogle Scholar
  37. Kurki S, Nikula A, Helle P, Lindén H (2000) Landscape fragmentation and forest composition effects on grouse breeding success in boreal forest. Ecology 8:1985–1997Google Scholar
  38. Lampert KP, Rand AS, Mueller UG, Ryan MJ (2003) Fine-scale genetic pattern and evidence for sex-biased dispersal in the túngara frog, Physalaemus pustulosus. Mol Ecol 12:3325–3334PubMedCrossRefGoogle Scholar
  39. Lebigre C, Alatalo RV, Siitari H (2010) Female-biased dispersal alone can reduce the occurrence of inbreeding in black grouse (Tetrao tetrix). Mol Ecol 19:1929–1939PubMedCrossRefGoogle Scholar
  40. Lindström J (1994) Tetraonid population studies—the state of the art. Ann Zool Fenn 31:347–364Google Scholar
  41. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425CrossRefGoogle Scholar
  42. Malcolm JR, Markham A, Neilson RC, Garaci M (2002) Estimated migration rates under scenarios of global climate change. J Biogeogr 29:835–849CrossRefGoogle Scholar
  43. Manel S, Schwartz M, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  44. Martinez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486PubMedCrossRefGoogle Scholar
  45. Miller MP (2005) Alleles in Space: computer software for the joint analysis of interindividual apatial and genetic information. J Hered 96:722–724PubMedCrossRefGoogle Scholar
  46. Mossman CA, Waser PM (1999) Genetic detection of sex-biased dispersal. Mol Ecol 8:1063–1067PubMedCrossRefGoogle Scholar
  47. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354PubMedCrossRefGoogle Scholar
  48. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  49. Piertney SB, Höglund J (2001) Polymorphic microsatellite DNA markers in black grouse (Tetrao tetrix). Mol Ecol Notes 1:303–304CrossRefGoogle Scholar
  50. Piertney SB, Maccoll ADC, Bacon PJ, Dallas JF (1998) Local genetic structure in red grouse (Lagopus lagopus scoticus): evidence from microsatellite DNA markers. Mol Ecol 7:1645–1654PubMedCrossRefGoogle Scholar
  51. Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  52. Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  53. Prugnolle F, de Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165PubMedCrossRefGoogle Scholar
  54. Raymond M, Rousset F (1995) GENEPOP (4.0.10): population genetics software for exact tests and ecumenism. J Hered 86:248–249Google Scholar
  55. Regnaut S, Christie P, Chapuisat M, Fumagalli L (2006) Genotyping faeces reveals facultative kin association on capercaillie’s leks. Conserv Genet 7:665–674CrossRefGoogle Scholar
  56. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  57. Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62CrossRefGoogle Scholar
  58. Rudh A, Rogel B (2007) Non-gradual variation in colour morphs of the strawberry poison frog Dendrobates pumilio: genetic and geographical isolation suggest a role for selection in maintaining polymorphism. Mol Ecol 20:4284–4294CrossRefGoogle Scholar
  59. Safner T, Miller MP, McRae BH, Fortin MJ, Manel S (2011) Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. Int J Mol Sci 12:865–889PubMedCrossRefGoogle Scholar
  60. Segelbacher G, Stoch I (2002) Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline. Mol Ecol 11:1669–1677PubMedCrossRefGoogle Scholar
  61. Segelbacher G, Paxton R, Steinbruek G, Trontelj P, Storch I (2002) Characterisation of microsatellites in capercaillie (Tetrao urogallus) (AVES). Mol Ecol 9:1934–1935CrossRefGoogle Scholar
  62. Segelbacher G, Manel S, Tomiuk J (2008) Temporal and spatial analyses disclose consequences of habitat fragmentation on the genetic diversity in capercaillie (Tetrao urogallus). Mol Ecol 17:2356–2367PubMedCrossRefGoogle Scholar
  63. Sirkiä S, Lindén A, Helle P, Nikula A, Knape J, Lindén H (2010) Are the declining trends in forest grouse populations due to changes in the forest age structure? A case study of capercaillie in Finland. Biol Conserv 143:1540–1548CrossRefGoogle Scholar
  64. Storch I (2007) Grouse: status survey and conservation action plan 2006–2010. IUCN and Fordingbridge/World Pheasant Association, Gland/UKGoogle Scholar
  65. Taberlet P, Camarra JJ, Griffin S, Uhrès E, Hanotte O, Waits LP, Dubois-Paganon C, Burke T, Bouvet J (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6:869–876PubMedCrossRefGoogle Scholar
  66. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  67. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935PubMedCrossRefGoogle Scholar
  68. Warren PK, Baines D (2002) Dispersal, survival, and causes of mortality in black grouse Tetrao tetrix in northern England. Wildl Biol 8:91–97Google Scholar
  69. Watts PC, Rousset F, Saccheri IJ, Leblois R, Kemp SJ, Thompson DJ (2007) Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercurial: Odonata: Zygoptera) populations: analysis of ‘neighborhood size’ using a more precise estimator. Mol Ecol 16:737–751PubMedCrossRefGoogle Scholar
  70. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  71. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedGoogle Scholar
  72. Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2012

Authors and Affiliations

  1. 1.Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden

Personalised recommendations