Journal of Ornithology

, Volume 153, Issue 3, pp 783–791 | Cite as

Bone collagen and muscle δ13C in relation to the timing of the migration of Garden Warblers Sylvia borin during return migration from Africa

  • Elizabeth YohannesEmail author
  • Raymond Lee
  • Vladimir Popenko
  • Ulf Bauchinger
Original Article


In migratory birds, seasonal factors interacting at different stages of the annual cycle can influence individual life histories. These have been well documented for Nearctic-Neotropical birds. Yet, seasonal interactions between the wintering, migration, and breeding periods have not been demonstrated for Palearctic-African passerine migrants. We tested whether variation in long- and short-term dietary choice of the Garden Warbler Sylvia borin can influence events during the subsequent spring migration from the African winter quarters to the Palearctic breeding grounds. Using bone collagen and muscle carbon stable isotope (δ13C) analysis, we assessed the relationships between dietary history, body condition, and migration timing in the Garden Warbler during a return migration from Africa. We predicted that Garden Warblers arriving early will have significantly different muscle and collagen δ13C relative to those arriving later. Whereas muscle δ13C (referring to events in the immediate past) was not related to body condition, we found a strong association between body condition and collagen δ13C signatures (representing the integration of long-term events). Collagen and muscle δ13C indicate that birds passing through later originated from moister or cooler geographic areas. The observed variation in isotope signatures might relate to differences in habitat and geographic/population origin, or in dietary intake.


Collagen Pectoral muscle Body condition Avian migration 


δ 13 C im Knochenkollagen und der Muskulatur von Gartengrasmücken Sylvia borin in Bezug zum Zugablauf während des Rückfluges aus Afrika

Wechselwirkungen saisonaler Faktoren während unterschiedlicher Etappen des Jahreszyklus können bei Zugvögeln deren individuelle Lebensgeschichte beeinflussen. Dies wurde für nearktisch-neotropische Vögel bereits gut belegt. Saisonale Wechselwirkungen zwischen dem Überwintern, dem Zug und der Brutperiode bei in der Paläarktis brütenden und in Afrika überwinternden Singvögeln sind bisher jedoch nicht bekannt. Wir überprüften ob die kurz- bzw. langfristige Nahrungswahl unter Gartengrasmücken Sylvia borin Ereignisse während des folgenden Frühjahrzuges aus den afrikanischen Winterquartieren in die paläarktischen Brutgebiete beeinflusst. Anhand des stabilen Kohlenstoffisotops (δ13C) im Knochenkollagen und in der Muskulatur untersuchten wir Zusammenhänge zwischen der vergangenen Nahrungsaufnahme, der Körperkondition und dem zeitlichen Ablauf des Zuges während des Heimfluges aus Afrika. Nach unserer Voraussage sollten signifikant unterschiedliche δ13C Muster für Knochenkollagen und Muskulatur bei früh und spät ankommenden Gartengrasmücken auftreten. Die δ13C Signatur der Muskulatur (zurückzuführen auf Ereignisse der unmittelbaren Vergangenheit) zeigte jedoch keine Beziehung zur Körperkondition, wohl aber die des Knochenkollagens (zurückzuführen auf Integration langfristiger Ereignisse). δ13C Knochenkollagen und Muskulatur deuten darauf hin, dass später durchziehende Vögel aus relativ feuchteren oder kälteren Gegenden stammen. Die hier beobachtete signifikante Variation in der Isotopensignatur könnte auf Unterschiede in den Habitaten, im geographischen Ursprung (Populationen) oder in der Nahrungsaufnahme zurückgeführt werden.



We are grateful to Lisa Trost, Mathias Wohlmann, and Oleg Formanyuk for assistance in the field, and to Kenji Adachi for assistance in the laboratory. We thank Josef Chernichko for generous support at the Azov-Black Sea Ornithological Station. We thank Scott McWilliams and Richard E. Johnson for helpful comments on drafts of the manuscript. Support was received from NSF grant DBI-011620 and the Max Planck Society. The expedition to Ukraine was supported by ESF research support provided in the framework of the program “Optimality in bird migration” to U.B. We thank two anonymous referees for their valuable comments on the manuscript.


  1. Bairlein F (1991) Body mass of garden warblers (Sylvia borin) on migration: a review of field data. Vogelwarte 36:48–61Google Scholar
  2. Bairlein F (1997) Spatio-temporal course, ecology and energetic of western Palaearctic-African songbird migration. Summary report 1994–1996. Institut für Vogelforschung, WilhelmshavenGoogle Scholar
  3. Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwiss 89:1–10PubMedCrossRefGoogle Scholar
  4. Bauchinger U, McWilliams SR (2009) Carbon turnover in tissues of a passerine bird: allometry, isotopic clocks, and phenotypic flexibility in organ size. Physiol Biochem Zool 82:787–797PubMedCrossRefGoogle Scholar
  5. Bauchinger U, McWilliams SR (2010) Carbon turnover in tissues of a passerine bird: allometry, isotopic clocks, and phenotypic flexibility in organ size (erratum). Physiol Biochem Zool 83:1032Google Scholar
  6. Bauchinger U, Wohlmann A, Biebach H (2005) Flexible remodelling of organ size during spring migration of the garden warbler (Sylvia borin). Zoology 108:97–106PubMedCrossRefGoogle Scholar
  7. Bauchinger U, Van’t Hof T, Biebach H (2007) Testicular development during long-distance spring migration. Horm Behav 51:295–305PubMedCrossRefGoogle Scholar
  8. Bauchinger U, Van’t Hof T, Biebach H (2008) Migratory stopover conditions affect the developmental state of male gonads in garden warblers (Sylvia borin). Horm Behav 54:312–318PubMedCrossRefGoogle Scholar
  9. Bauchinger U, Van’t Hof T, Biebach H (2009) Food availability during migratory stopover affects testis growth and reproductive behaviour in a migratory passerine. Horm Behav 55:425–433PubMedCrossRefGoogle Scholar
  10. Bauchinger U, Keil J, McKinney RA, Starck JM, McWilliams SR (2010) Exposure to cold but not exercise increases carbon turnover rates in specific tissues of a passerine. J Exper Biol 213:526–534CrossRefGoogle Scholar
  11. Bearhop S, Hilton GM, Voiter SC, Waldron S (2004) Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Proc R Soc Lond Ser B 271:215–218CrossRefGoogle Scholar
  12. Berthold P (1976) Über den Einfluss der Fettdeposition auf die Zugunruhe bei der Gartengrasmücke Sylvia borin. Vogelwarte 28:263–266Google Scholar
  13. Biebach H (1990) Strategies of trans-Saharan migrants. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin, pp 352–367Google Scholar
  14. Braune MB, Hobson KA, Malone BJ (2005) Regional differences in collagen stable isotope and tissue trace element profiles in populations of long-tailed duck breeding in the Canadian Arctic. Sci Total Environ 346:156–168PubMedCrossRefGoogle Scholar
  15. Brocherens H (2005) Stable isotopes of collagen and the subsistence strategies of European hunter-gatherers, from Neanderthals to Mesolithics. Geophys Res 7:0085Google Scholar
  16. Carleton SA, Martínez del Rio C (2005) The effect of cold induced increased metabolic rate on the rate of 13C and 15N incorporation in house sparrows (Passer domesticus). Oecologia 144:226–232PubMedCrossRefGoogle Scholar
  17. Carleton SA, Kelly L, Anderson-Sprecher R, Martínez del Rio C (2008) Should we use one-, or multi-compartment models to describe 13C incorporation into animal tissues? Rapid Commun Mass Spectrom 22:3008–3014Google Scholar
  18. Cerling TE, Ehleringer JR, Harris JM (1998) Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Phil Trans B 353:159–171CrossRefGoogle Scholar
  19. Clark CW, Ekman J (1995) Dominant and subordinate fattening strategies: a dynamic game. Oikos 72:205–212CrossRefGoogle Scholar
  20. Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci USA 100:12219–12222Google Scholar
  21. Cramp S (1988) Handbook of the birds of Europe, the Middle East and North Africa: the birds of the western Palaearctic. Vol. V. Tyrant Flycatchers to Thrushes. Oxford University Press, OxfordGoogle Scholar
  22. Ehleringer JR, Cooper TA (1988) Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76:562–566Google Scholar
  23. Ekman JB, Lilliendahl K (1993) Using priority to food access—fattening strategies in dominance-structured willow tit (Parus montanus) flocks. Behav Ecol 4:232–238CrossRefGoogle Scholar
  24. Fusani L, Cardinale M, Carere C, Goymann W (2009) Stopover decision during migration: physiological conditions predict nocturnal restlessness in wild passerines. Biol Lett 5:302–305PubMedCrossRefGoogle Scholar
  25. Gagnon C, Hobson KA (2009) Using stable isotopes to track frugivory in migratory passerines. Can J Zool 87:981–992Google Scholar
  26. Gosler AG (1996) Environmental and social determinants of winter fat storage in the great tit Parus major. J Animal Ecol 65:1–17CrossRefGoogle Scholar
  27. Goymann W, Spina F, Ferri A, Fusani L (2010) Body fat influences departure from stopover sites in migratory birds: evidence from whole-island telemetry. Biol Lett 6:478–481PubMedCrossRefGoogle Scholar
  28. Grattarola A, Spina F, Pilastro A (1999) Spring migration of the garden warbler (Sylvia borin) across the Mediterranean Sea. J Ornithol 140:419–430CrossRefGoogle Scholar
  29. Gwinner E (1987) Photoperiodic synchronization of circannual rhythms in gonadal activity, migratory restlessness, body weight, and molt in Garden Warbler (Sylvia borin). In: Pévet P (ed) Comparative physiology of environmental adaptations, vol 3. Karger, Basel, pp 30–44Google Scholar
  30. Herrera LG, Hobson KA, Manzo A, Estrada D, Sánchez-Cordero V, Méndez G (2001a) The role of fruits and insects in the nutrition of frugivorous bats: evaluating the use of stable isotope models. Biotropica 33:520–528Google Scholar
  31. Herrera LG, Hobson KA, Mirón L, Ramírez N, Méndez G, Sánchez-Cordero V (2001b) Sources of protein in two species of phytophagous bats in a seasonal dry forest: evidence from stable isotope analysis. J Mammal 82:352–361CrossRefGoogle Scholar
  32. Herrera LG, Hobson KA, Rodríguez M, Hernandez P (2003) Trophic partitioning in tropical rain forest birds: insights from stable isotope analysis. Oecologia 136:439–444PubMedCrossRefGoogle Scholar
  33. Herrera LG, Hobson KA, Rodríguez M, Hernandez P (2005) Quantifying differential responses to fruit abundance by two rainforest birds using long-term isotopic monitoring. Auk 122:783–792CrossRefGoogle Scholar
  34. Hobson KA (1987) Use of stable-carbon isotope analysis to estimate marine and terrestrial protein content in gull diets. Can J Zoology 65:1210–1213Google Scholar
  35. Hobson KA (1993) Trophic relationships among high Arctic seabirds: Insights from tissue- dependent stable-isotope models. Mar Ecol Prog Ser 95:7–18CrossRefGoogle Scholar
  36. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326CrossRefGoogle Scholar
  37. Hobson KA (2005) Using stable isotopes to trace long-distance dispersal in birds and other taxa. Divers Distrib 11:157–164CrossRefGoogle Scholar
  38. Hobson KA, Bairlein F (2003) Isotopic fractionation and turnover in captive Garden Warblers (Sylvia borin): implications for delineating dietary and migratory associations in wild passerines. Can J Zool 81:1630–1635CrossRefGoogle Scholar
  39. Hobson KA, Clark RG (1992) Assessing avian diets using stable isotope II: factors influencing diet-tissue fractionation. Condor 94:81–188Google Scholar
  40. Hobson KA, Montevecchi WA (1991) Stable isotopic determinations of the trophic relationships of Great Auks. Oecologia 87:528–531CrossRefGoogle Scholar
  41. Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786–798CrossRefGoogle Scholar
  42. Hobson KA, Gibbs HL, Gloutney ML (1997) Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Can J Zool 75:1720–1723CrossRefGoogle Scholar
  43. Klein H, Berthold P, Gwinner E (1973) Der Zug europäischer Garten und Mönchsgrasmücken (Sylvia borin und S. atricapilla). Vogelwarte 27:73–134Google Scholar
  44. Koch PL, Heisinger J, Moss C, Carlson RW, Fogel ML, Behrensmeyer AK (1995) Isotopic tracking of change in diet and habitat use in African elephants. Science 267:1340–1343PubMedCrossRefGoogle Scholar
  45. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950CrossRefGoogle Scholar
  46. Lajtha K, Marshall J (2007) Stable isotopes in ecological and environmental sciences. Ecological methods and concepts, 2nd edn. Blackwell, LondonGoogle Scholar
  47. Lee-Thorp JA, van der Merwe NJ (1991) Aspects of the chemistry of modern and fossil biological apatites. J Archaeol Sci 18:343–354CrossRefGoogle Scholar
  48. Lockwood R, Swaddle JP, Rayner JMV (1998) Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J Avian Biol 29:273–292CrossRefGoogle Scholar
  49. Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886PubMedCrossRefGoogle Scholar
  50. Moreau RE (1972) The Palearctic-African bird migration system. Academic, LondonGoogle Scholar
  51. Myers JP (1981) Cross-seasonal interactions in the evolution of sandpiper social systems. Behav Ecol Sociobiol 8:195–202Google Scholar
  52. Norris DR (2005) Carry-over effects and habitat quality in migratory populations. Oikos 109:178–186CrossRefGoogle Scholar
  53. Norris DR, Marra PP Kyser TK, Sherry TW, Ratcliff LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond Ser B 271:59–64Google Scholar
  54. Parrish JD, Sherry TW (1994) Sexual habitat segregation by American redstarts wintering in Jamaica: importance of resource seasonally. Auk 111:38–49Google Scholar
  55. Pearson DJ, Lack PC (1992) Migration patterns and habitat use by passerine and near-passerine migrant birds in eastern Africa. Ibis 134:89–98Google Scholar
  56. Pearson SF, Levey DJ, Greenberg CH, Martinez del Río C (2003) Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135:516–523PubMedGoogle Scholar
  57. Podelsak D, McWilliams SR, Hatch KA (2005) Stable isotopes in breath, blood, feces and feathers can indicate intra-individual changes in the diet of migratory songbirds. Oecologia 142:501–510CrossRefGoogle Scholar
  58. Procházka P, Reif J, Hořák D, Klvaňa P, Lee RW, Yohannes E (2010) Using stable isotopes to trace resource acquisition and trophic position in four Afrotropical birds with different diets. Ostrich 81:273–275CrossRefGoogle Scholar
  59. Rayner JMV (1988) Form and function in avian flight. Current Ornithol 5:1–66Google Scholar
  60. Salomonsen F (1955) The evolutionary significance of bird migration. Det Kongelige Danske videnskabernes Selskab, Biologiske Meddelelser 22:1–62Google Scholar
  61. Sandberg R, Moore FR (1996) Fat stores and arrival on the breeding grounds: reproductive consequences for passerine migrants. Oikos 77:577–581CrossRefGoogle Scholar
  62. Sarakinos HC, Johnson ML, Vanderzanden MJ (2002) A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures. Can J Zool 80:381–387CrossRefGoogle Scholar
  63. Silverin B (1998) Territorial behaviour and hormones of pied flycatchers in optimal and suboptimal habitats. Anim Behav 56:811–818PubMedCrossRefGoogle Scholar
  64. Simons D, Bairlein F (1990) Neue Aspekte zur zugzeitlichen Frugivorie der Gartengrasmücke (Sylvia borin). J Ornithol 131:381–401CrossRefGoogle Scholar
  65. Sokolov LV, Kosarev VV (2003) Relationship between timing of arrival of passerines to the Courish Split and North Atlantic Oscillation Index (NAOI) and precipitation in Africa. Proc Zool Inst Russ Acad Sci 299:141–154Google Scholar
  66. Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycle 17:1006–1029CrossRefGoogle Scholar
  67. Studds CE, Marra PP (2005) Nonbreeding habitat occupancy and population processes: an upgrade experiment with a migratory bird. Ecology 86:2380–2385CrossRefGoogle Scholar
  68. Svensson L (1992) Identification guide to European passerines, 4th edn. L. Svensson, StockholmGoogle Scholar
  69. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unravelling migratory connectivity. Trends Ecol Evol 17:76–82Google Scholar
  70. Winkler H, Leisler B (1992) On the ecomorphology of migrants. Ibis 134(Suppl):21–28Google Scholar
  71. Yohannes E, Ash J, Biebach H, Nikolaus G, Pearson JD (2009) Migration speeds among eleven species of long-distance migrating passerines across Europe, the Desert and Eastern Africa. J Avian Biol 40:126–134CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Elizabeth Yohannes
    • 1
    Email author
  • Raymond Lee
    • 2
  • Vladimir Popenko
    • 3
  • Ulf Bauchinger
    • 4
    • 5
  1. 1.Stable Isotope Laboratory, Institute for LimnologyUniversity of ConstanceKonstanzGermany
  2. 2.School of Biological SciencesWashington State UniversityPullmanUSA
  3. 3.Melitopol, Zaporizhzhia RegionUkraine
  4. 4.Department of BiologyUniversity of MunichPlanegg-MartinsriedGermany
  5. 5.Department of Natural Resources Science, 105 Coastal Institute in KingstonUniversity of Rhode IslandKingstonUSA

Personalised recommendations