Journal of Ornithology

, Volume 153, Issue 3, pp 713–726 | Cite as

Individual behavioural variability of an ecological generalist: activity patterns and local movements of Mallards Anas platyrhynchos in winter

  • Annette Sauter
  • Pius Korner
  • Wolfgang Fiedler
  • Lukas Jenni
Original Article

Abstract

Common and widespread species often show a large variability in behaviour and habitat use. Such variability at the species level may result from individuals themselves being very variable or, alternatively, variability may arise from differences between individuals. The aim of this study was to explore land use in general and between-subject variability in the local movements and daily activity patterns of Mallards Anas platyrhynchos in central Switzerland during the winter. The Mallard is a common duck species and can be found on almost all types of water bodies. We equipped 24 ducks with VHF radio tags and searched for these ducks 1–3 times per day. We also used nine tags that automatically recorded their location every 30 min as well as acceleration in three dimensions every 2–5 min. These methods yielded information on the activity of the duck with a high temporal resolution both day and night. The 24 ducks were strongly linked to water, and 97% of all localisations were within 50 m of a water body. An affinity to settlements was only observed in the vicinity of the main lake in the area, but not for those ducks on smaller water bodies or fields. Some individuals were very stationary, using only a small area during the study period; others made daily commuting flights between two sites about 8 km apart while still others moved around similar distances but in varying directions. Rain and increasing wind speed correlated with decreasing movement activity. However, the effect of these weather parameters, and especially that of temperature, varied between individuals. Activity was strongly influenced by the sun’s movement, with general activity and flight activity being highest around sunrise and sunset. This daily pattern was similar for all individuals. Hence, while the activity pattern was similar for all individuals, the resulting degree of local movements and the response to changing weather parameters were very variable among individuals.

Keywords

Mallard Anas platyrhynchos Winter Land use Daily activity pattern 

Zusammenfassung

Individuelle Variabilität im Verhalten eines ökologischen Generalisten: Aktivitätsmuster und lokale Ortswechsel bei der Stockente (Anas platyrhynchos)im Winter

Häufige und weit verbreitete Arten zeigen oft eine große Variabilität in Verhalten und Habitatnutzung. Diese Variabilität auf Artniveau kann sowohl durch ein vielfältiges Verhaltensrepertoir eines jeden Individuums entstehen, als auch durch große Unterschiede zwischen den Individuen. In dieser Studie untersuchten wir, wie Stockenten Anas platyrhynchos im Winter die vorhandenen Lebensraumtypen nutzten und wie sich das tägliche Aktivitätsmuster und die lokalen Ortswechsel zwischen den Individuen unterschieden. Die Stockente ist eine häufige Art, die fast alle verfügbaren Gewässertypen nutzt. Wir stellten den Aufenthaltsort von 24 mit VHF Radiosendern bestückten Individuen ein- bis dreimal täglich fest. Weitere neun Individuen wurden mit GPS-Sendern ausgerüstet. Die GPS-Ortung alle 30 Minuten sowie Beschleunigungsmessungen alle zwei bis fünf Minuten lieferten Informationen über das Verhalten dieser Enten mit großer zeitlicher Auflösung und über 24 Stunden am Tag. Die Stockenten waren stark an Gewässer gebunden. 97% aller Lokalisationen lagen innerhalb von 50 m um ein Gewässer. Eine Affinität zum Siedlungsraum wurde nur in der Nähe des größten Sees im Untersuchungsgebiet festgestellt, aber nicht bei den Enten, die kleinere Gewässer oder Felder nutzten. Einige Individuen waren sehr stationär und nutzten nur einen kleinen Raum während der ganzen Studie, andere wechselten täglich zwischen zwei acht Kilometer auseinander liegenden Aufenthaltsorten und nochmals andere Individuen legten ähnliche Distanzen zurück aber nicht in konstanten Richtungen. Zunehmender Regen und Wind korrelierten mit weniger weiten Ortswechseln. Dieser Wettereffekt, vor allem der Temperatureffekt, variierte allerdings deutlich zwischen den Individuen. Das Aktivitätsmuster wurde stark durch die Tageszeiten bestimmt: Um Sonnenauf- und –untergang war die Aktivität am höchsten und es fanden die meisten Ortsbewegungen durch Flug statt. Dieses tageszeitliche Muster war bei allen Individuen ähnlich. Das Ausmaß der Ortsveränderungen und die Reaktion auf Wettereinflüsse variierten aber zwischen den Individuen stark, was zu einer großen individuellen Variabilität der Raumnutzung führte.

References

  1. Baldassarre GA, Bolen EG (1984) Field-feeding ecology of waterfowl wintering on the southern high plains of Texas. J Wildl Manage 48:63–71CrossRefGoogle Scholar
  2. Bates D, Mächler M (2010) lme4: Linear mixed-effects models using S4 classes. Available at: http://lme4.r-forge.r-project.org
  3. Bezzel E (1959) Beiträge zur Biologie der Geschlechter bei Entenvögeln. Anz Ornithol Ges Bayern 5:269–355Google Scholar
  4. Bolnick DI, Svanbäck N, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28PubMedCrossRefGoogle Scholar
  5. Bossenmair EF, Marshall WH (1958) Field-feeding by waterfowl in southwestern Manitoba. Wildl Monogr 1:1–32Google Scholar
  6. Brunhart I, Falk M, Greber N, Baumer A, Globig A, Fink M, Fiedler W, Sauter A, Fiebig L, Saurina J, Zinsstag J, Conraths FJ, Stärk K, Girot C (2010) Schlussbericht Forschungsprogramm “Constanze”. Bundesamt für Veterinärwesen BVET, BernGoogle Scholar
  7. Diefenbach DR, Nichols JD, Hines JE (1988) Distribution patterns of American Black Duck and Mallard winter band recoveries. J Wildl Manage 52:704–710CrossRefGoogle Scholar
  8. EFSA (European Food Safety Authority) (2006) Migratory birds and their possible role in the spread of highly pathogenic avian influenza. Annex EFSA J 357:1–46Google Scholar
  9. Faraway JJ (2006) Extending the linear model with R. Chapman and Hall, LondonGoogle Scholar
  10. Gauthier-Clerc M, Lebarbenchon C, Thomas F (2007) Recent expansion of highly pathogenic avian influenza H5N1: a critical review. Ibis 149:202–214CrossRefGoogle Scholar
  11. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  12. Guillemain M, Fritz H, Duncan P (2002) The importance of protected areas as nocturnal feeding grounds for dabbling ducks wintering in western France. Biol Conserv 103:183–198CrossRefGoogle Scholar
  13. Hofer J, Korner-Nievergelt P, Korner-Nievergelt F (2010) Auftreten und Herkunft der Wasservögel am Sempachersee. Ornithol Beob Beiheft 11Google Scholar
  14. Jorde DG, Krapu GL, Crawford RD (1983) Feeding ecology of Mallards wintering in Nebraska. J Wildl Manage 47:1044–1053CrossRefGoogle Scholar
  15. Jorde DG, Krapu GL, Crawford RD, Hay MA (1984) Effects of weather on habitat selection and behavior of Mallards wintering in Nebraska. Condor 86:258–265CrossRefGoogle Scholar
  16. Keawcharoen J, van Riel D, van Amerongen G, Bestebroer T, Beyer WE, van Lavieren R, Osterhaus A, Fouchier R, Kuiken T (2008) Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 14:600–607PubMedCrossRefGoogle Scholar
  17. Kozulin A (1995) Ecology of Mallards Anas platyrhynchos wintering in low temperatures conditions in Belarus. Acta Ornithol 30:125–134Google Scholar
  18. Legagneux P, Blaize C, Latraube F, Gautier J, Bretagnolle V (2009) Variation in home-range size and movements of wintering dabbling ducks. J Ornithol 150:183–193CrossRefGoogle Scholar
  19. Mason CF, Hofmann TA, Macdonald SM (2006) The winter bird community of river corridors in eastern England in relation to habitat variables. Ornis Fenn 83:73–85Google Scholar
  20. McNeil R, Drapeau P, Gross-Custard JD (1992) The occurrence and adaptive significance of nocturnal habits in waterfowl. Biol Rev 67:381–419CrossRefGoogle Scholar
  21. Miller MR (1985) Time budgets of Northern Pintails wintering in the Sacramento Valley, California. Wildfowl 36:65–71Google Scholar
  22. Owen M (1991) Nocturnal feeding in waterfowl. Acta XX Congressus Internationalis Ornithologici, pp 1105–1112Google Scholar
  23. Paulus SL (1984) Activity budgets of nonbreeding Gadwalls in Louisiana. J Wildl Manage 48:371–380CrossRefGoogle Scholar
  24. Paulus SL (1988) Time-activity budgets of nonbreeding Anatidae: a review. In: Wennerberg L (ed) Waterfowl in winter. University of Minnesota, Minneapolis, pp 135–152Google Scholar
  25. Quinlan EE, Baldassarre GA (1984) Activity budgets of nonbreeding Green-winged Teal on Playa Lakes in Texas. J Wildl Manage 48:838–845CrossRefGoogle Scholar
  26. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.r-project.org
  27. Robb JR (2002) Band recovery and recapture rates of American Black Ducks and Mallards. J Wildl Manage 66:153–161CrossRefGoogle Scholar
  28. Roshier DA, Klomp NI, Asmus M (2006) Movements of a nomadic waterfowl, Grey Teal, Anas garcilis, across inland Australia—results from satellite telemetry spanning fifteen months. Ardea 94:460–475Google Scholar
  29. Sauter A, Korner-Nievergelt F, Jenni L (2010) Evidence of climate change effects on within-winter movements of European Mallards Anas platyrhynchos. Ibis 152:600–609CrossRefGoogle Scholar
  30. Shepard EL, Wilson RP, Quintana F, Gomez Laich A, Liebsch N, Albareda DA, Halsey LG, Gleiss A, Morgan DT, Myers AE, Newman C, Macdonald DW (2008) Identification of animal movement patterns using tri-axial accelerometry. Endangered Spec Res 10:47–60CrossRefGoogle Scholar
  31. Tamisier A (1976) Diurnal activities of Green-winged Teal and Pintail wintering in Louisiana. Wildfowl 27:19–32Google Scholar
  32. Tamisier A (1978) The functional units of wintering ducks: a spatial integration of their comfort and feeding requirements. Verh Ornithol Ges Bayern 23:229–238Google Scholar
  33. Thomas GJ (1982) Autumn and winter feeding ecology of waterfowl at the Ouse Washes England. J Zool 197:131–172Google Scholar
  34. Winner RW (1959) Field-feeding periodicity of Black and Mallard Ducks. J Wildl Manage 23:197–202CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Annette Sauter
    • 1
    • 2
  • Pius Korner
    • 1
  • Wolfgang Fiedler
    • 3
  • Lukas Jenni
    • 1
  1. 1.Schweizerische Vogelwarte SempachSempachSwitzerland
  2. 2.Hoffmann-La Roche AGBaselSwitzerland
  3. 3.Max-Planck-Institut für OrnithologieRadolfzellGermany

Personalised recommendations