Journal of Ornithology

, Volume 153, Issue 2, pp 441–455 | Cite as

Storms and heat limit the nest success of Bank Cormorants: implications of future climate change for a surface-nesting seabird in southern Africa

  • Richard B. SherleyEmail author
  • Katrin Ludynia
  • Les G. Underhill
  • Rian Jones
  • Jessica Kemper
Original Article


The Bank Cormorant Phalacrocorax neglectus is endemic to the Benguela Upwelling System of southern Africa. Most breeding colonies occur on offshore rocks, islands or man-made structures close to the high-water mark. Despite adaptations for breeding close to the water, nests can be lost to storms. Using data from two colonies where food is not considered limiting, we present a comparative study on nest survival in Bank Cormorants. Using a combination of the Mayfield method and parametric survival analysis, nest success was compared in nests on man-made structures at Robben Island, South Africa, where birds breed during the austral winter, with nests on man-made and natural structures at Mercury Island, Namibia, where Bank Cormorants breed during the austral summer. Overall, the probability of a nest surviving the breeding attempt was lower at Robben Island than at Mercury Island in all three seasons. Nest failures at Robben Island were related to wave heights and air temperature, with trends to suggest reduced chick survival in years where major storm events occurred during peak breeding. A heat wave appeared to cause major chick mortality at Mercury Island in 2005. Nest survival was relatively invariable between years at the main site monitored on Mercury Island, where nests were partially sheltered from the sun, but breeding productivity was poor in comparison to other cormorant species. Winter breeding in South Africa may increase the risk from storms but reduce the risk of heat exposure. An understanding of the impact of stochastic events on Bank Cormorants may be important in safe-guarding the continued survival of the species, particularly in light of the risks posed by future climate change.


Reproductive success Nesting habitat Climate change Seabird conservation Bank Cormorant Phalacrocorax neglectus 


Stürme und Hitze limitieren den Bruterfolg der Küstenscharbe Phalacrocorax neglectus : Auswirkungen des Klimawandels auf einen nahe des Meeresspiegels brütenden Seevogel im südlichen Afrika

Die Küstenscharbe Phalacrocorax neglectus ist endemisch für das Auftriebsgebiet des Benguela-Stroms im südlichen Afrika. Die meisten Brutkolonien befinden sich auf Felsen, Inseln und künstlichen Strukturen kurz über der Hochwassermarke. Trotz Anpassungen an das Brüten nahe der Wasserlinie werden Nester oft durch Stürme zerstört. In dieser Studie vergleichen wir den Bruterfolg der Küstenscharbe in zwei unterschiedlichen Kolonien, in denen keine Nahrungsknappheit vorliegt. Mit Hilfe der Mayfield-Methode und parametrischer Tests zur Berechnung der Überlebensrate wurden der Bruterfolg von Tieren auf Robben Island, Südafrika, und Mercury Island, Namibia verglichen. Auf Robben Island brüten die Tiere im dortigen Winter auf künstlichen Strukturen, während die Vögel auf Mercury Island während der Sommermonate sowohl auf natürlichen als auch auf künstlichen Strukturen brüten. In allen drei Untersuchungsjahren lag der Bruterfolg auf Robben Island unter dem von Mercury Island. Nestverluste auf Robben Island wiesen einen Zusammenhang mit Wellenhöhe und Lufttemperaturen auf und höhere Kükenverlusten wurden in Jahren beobachtet, in denen große Sturmereignisse mit der Hauptbrutperiode zusammenfielen. Eine Hitzewelle in 2005 verursachte ein großes Kükensterben auf Mercury Island. Der Bruterfolg schwankte nur gering auf Mercury Island in der Hauptbrutkolonie, wo Nester teilweise geschützt und im Schatten lagen. Im Vergleich zu anderen Kormoranarten war der Bruterfolg aber eher gering. Das Brüten im Winter bei Tieren in Südafrika verringert die Gefahr der Verluste durch Hitzwellen, erhöht aber die Gefahr von Nestverlusten durch Stürme. Ein besseres Verständnis der Einflüsse von stochastischen Wetterereignissen auf den Bruterfolg dieser bedrohten Art ist besonders wichtig in Hinblick auf den Klimawandel und damit einhergehenden Veränderungen im Wetter.



This study was supported by our institutes and funded by the Leverhulme Trust (R.B.S.), the Claude Leon Foundation (K.L.), the Earthwatch Institute (R.B.S., L.G.U.), and the SeaChange Programme of the National Research Foundation (L.G.U.). The study at Robben Island was conducted on behalf of the Oceans and Coasts (OC) branch of the Department of Environmental Affairs (South Africa). The Ministry of Fisheries and Marine Resources (MFMR), Namibia, gave permission to work on Mercury Island and provided transport to and from the island. MFMR, OC and the Robben Island Museum (RIM) provided logistical support. The wave data for Cape Point were supplied to R.B.S. by the Coastal Engineering and Port Infrastructure research group of the Council for Scientific and Industrial Research (CSIR), Stellenbosch, and were collected on behalf of the Transnet National Ports Authority (TNPA). The weather data from Robben Island were provided by the South African Weather Service (SAWS). We are grateful to SAWS, TNPA and CSIR for allowing their use here. T. Mario Leshoro (RIM) and Nola Parsons (OC) assisted with fieldwork. Peter J. Barham, Timothée Cook and one anonymous reviewer provided comments which improved earlier versions of the manuscript.


  1. Aebischer NJ (1999) Immediate and delayed effects of a gale in late spring on the breeding of the shag Phalacrocorax aristotelis. Ibis 135:225–232CrossRefGoogle Scholar
  2. Aebischer NJ, Wanless S (1992) Relationships between colony size, adult non-breeding and environmental conditions for shags Phalacrocorax aristotelis on the Isle of May, Scotland. Bird Study 39:43–52CrossRefGoogle Scholar
  3. Anderson DW, Keith JO (1980) The human influence on seabird nesting success: conservation implications. Biol Conserv 18:65–80CrossRefGoogle Scholar
  4. Bartlett PA, Roux J-P, Jones R, Kemper J (2003) A new mainland breeding locality for African penguins, bank and crowned cormorants on the Namib desert coast. Ostrich 74:222–225CrossRefGoogle Scholar
  5. Berruti A (1995) Resident seabirds. In: Payne AIL, Crawford RJM (eds) Oceans of life off southern Africa, 2nd edn. Vlaeberg, Cape Town, pp 257–273Google Scholar
  6. BirdLife International (2010) IUCN red list of threatened species, version 2010.1. Accessed 28 April 2010
  7. Boekelheide RJ, Ainley DG (1989) Age resource availability and breeding effort in Brandt’s cormorant. Auk 106:398–401Google Scholar
  8. Braby J, Underhill LG (2007) Was poor breeding productivity of African black oystercatchers on Robben Island in 2004/05 caused by feral cats, kelp gulls, mole snakes or the Sumatra tsunami? Wader Study Group Bull 113:66–70Google Scholar
  9. Brothers NP (1985) Breeding biology, diet and morphometrics of the king shag, Phalacrocorax albiventer purpurascens at Macquarie Island. Aust Wildl Res 12:81–94CrossRefGoogle Scholar
  10. Cockcroft AC (2001) Jasus lalandii ‘walkouts’ or mass strandings in South Africa during the 1990s: an overview. Mar Freshw Res 52:1085–1094CrossRefGoogle Scholar
  11. Cooper J (1981) Biology of the bank cormorant, part 1: distribution, population size, movements and conservation. Ostrich 52:208–215CrossRefGoogle Scholar
  12. Cooper J (1985) Biology of the bank cormorant, part 3: foraging behaviour. Ostrich 56:86–95CrossRefGoogle Scholar
  13. Cooper J (1986) Biology of the bank cormorant, part 4: nest construction and characteristics. Ostrich 57:170–179CrossRefGoogle Scholar
  14. Cooper J (1987) Biology of the bank cormorant, part 5: clutch size, eggs and incubation. Ostrich 58:1–8CrossRefGoogle Scholar
  15. Cooper J (1988) Marine cormorants breeding on the mainland at Stony Point, southern Cape, South Africa. Cormorant 16:55Google Scholar
  16. Crawford RJM, Cooper J (2005) Bank cormorant Phalacrocorax neglectus. In: Hockey PAR, Dean WRJ, Ryan PG (eds) Roberts–birds of southern Africa. Trustees of the John Voelcker Bird Book Fund, Cape Town, pp 577–578Google Scholar
  17. Crawford RJM, Dyer BM (2000) Wildlife of Robben Island, bright continent guide 1. Avian Demography Unit, Cape TownGoogle Scholar
  18. Crawford RJM, Dyer BM, Cordes I, Williams AJ (1999) Seasonal pattern of breeding, population trends and conservation status of bank cormorants Phalacrocorax neglectus off south western Africa. Biol Conserv 87:49–58CrossRefGoogle Scholar
  19. Crawford RJM, Cooper J, Dyer BM, Wolfaardt AC, Tshingana D, Spencer K, Petersen SL, Nel JL, Keith DG, Holness CL, Hanise B, Greyling MD, du Toit M (2003) Population, breeding, diet and conservation of the Crozet shag Phalacrocorax [atriceps] melanogenis at Marion Island, 1994/95–2002/03. Afr J Mar Sci 25:537–547CrossRefGoogle Scholar
  20. Crawford RJM, Cockcroft AC, Dyer BM, Upfold L (2008a) Divergent trends in bank cormorant Phalacrocorax neglectus breeding in South Africa’s Western Cape consistent with a distributional shift of rock lobsters Jasus lalandii. Afr J Mar Sci 30:161–166CrossRefGoogle Scholar
  21. Crawford RJM, Sabarros PS, Fairweather T, Underhill LG, Wolfaardt AC (2008b) Implications for seabirds off South Africa of a long-term change in the distribution of sardine. Afr J Mar Sci 30:177–184CrossRefGoogle Scholar
  22. Crick HQP, Baillie SR, Leech DI (2003) The UK nest record scheme: its value for science and conservation. Bird Study 50:254–270CrossRefGoogle Scholar
  23. Cruywagen GC (1997) The use of generalized linear modelling to determine interannual and inter-area variation of growth rates: the Cape rock lobster as example. Fish Res 29:119–131CrossRefGoogle Scholar
  24. du Toit M, Boere GC, Cooper J, de Villiers MS, Kemper J, Lenten B, Petersen SL, Simmons RE, Underhill LG, Whittington PA, Byers OP (2003) Conservation assessment and management plan for southern African coastal seabirds. Avian Demography Unit and Conservation Breeding Specialist Group, New YorkGoogle Scholar
  25. Duffy DC (1983) The ecology of tick parasitism on densely nesting Peruvian seabirds. Ecology 64:110–119CrossRefGoogle Scholar
  26. Enstipp MR, Grémillet D, Lorentsen S-H (2005) Energetic costs of diving and thermal status in European shags (Phalacrocorax aristotelis). J Exp Biol 208:3451–3461PubMedCrossRefGoogle Scholar
  27. Enstipp MR, Jones DR, Lorentsen S-H, Grémillet D (2007) Energetic costs of diving and prey-capture capabilities in cormorants and shags (Phalacrocoracidae) underline their unique adaptation to the aquatic environment. J Ornithol 148(suppl 2):593–600CrossRefGoogle Scholar
  28. Finney SK, Wanless S, Harris MP (1999) The effect of weather conditions on the feeding behaviour of a diving bird, the common guillemot (Uria aalge). J Avian Biol 30:23–30CrossRefGoogle Scholar
  29. Frederiksen M, Daunt F, Harris MP, Wanless S (2008) The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird. J Anim Ecol 77:1020–1029PubMedCrossRefGoogle Scholar
  30. Frost PGH, Siegfried WR, Buger AE (1976) Behavioural adaptations of the jackass penguin Spheniscus demersus to a hot, arid environment. J Zool 179:165–187CrossRefGoogle Scholar
  31. Furness R, Monaghan P (1987) Seabird ecology. Blackie, LondonGoogle Scholar
  32. Grémillet D, Wanless S, Carss DN, Linton D, Harris MP, Speakman JR, Le Maho Y (2001) Foraging energetics of Arctic cormorants and the evolution of diving birds. Ecol Lett 4:180–184CrossRefGoogle Scholar
  33. Grémillet D, Chauvin C, Wilson RP, Le Maho Y, Wanless S (2005) Unusual feather structure allows partial plumage wettability in diving great cormorants Phalacrocorax carbo. J Avian Biol 36:25–63CrossRefGoogle Scholar
  34. Hamer KC, Schreiber EA, Burger J (2001) Breeding biology, life histories, and life history-environment interactions in seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC, Boca Ranton, pp 217–261Google Scholar
  35. Johnson DH (1979) Estimating nest success: the Mayfield method and an alternative. Auk 96:651–661Google Scholar
  36. Jones NM, McChesney GJ, Parker MW, Yee JL, Carter HR, Golightly RT (2008) Breeding phenology and reproductive success of the Brandt’s cormorant at three nearshore colonies in central California, 1997–2001. Waterbirds 31:505–519CrossRefGoogle Scholar
  37. Kemper J, Underhill LG, Crawford RJM, Kirkman SP (2007) Revision of the conservation status of seabirds and seals breeding in the Benguela ecosystem. In: Kirkman SP (ed) Final report of the BCLME (Benguela Current Large Marine Ecosystem) project on top predators as biological indicators of ecosystem change in the BCLME. Avian Demography Unit, Cape Town, pp 325–342Google Scholar
  38. Klett AT, Johnson D (1982) Variability in nest survival rates and implications to nesting studies. Auk 99:77–87Google Scholar
  39. Konawzewski M, Taylor JRE (1989) The influence of weather conditions on growth of little auk Alle alle chicks. Ornis Scand 20:112–116CrossRefGoogle Scholar
  40. Ludynia K, Jones R, Kemper J, Garthe S, Underhill LG (2010a) Foraging behaviour of bank cormorants in Namibia: implications for conservation. Endang Species Res 12:31–40CrossRefGoogle Scholar
  41. Ludynia K, Roux J-P, Kemper J, Underhill LG (2010b) Surviving off junk: low-energy prey dominates the diet of African penguins Spheniscus demersus at Mercury Island, Namibia, between 1996 and 2009. Afr J Mar Sci 32:563–572CrossRefGoogle Scholar
  42. Mason SJ, Waylen PR, Mimmack GM, Rajaratnam B, Harrison MJ (1999) Changes in extreme rainfall events in South Africa. Climatic Change 41:249–257CrossRefGoogle Scholar
  43. Mayfield H (1961) Nest success calculated from exposure. Wilson Bull 73:255–261Google Scholar
  44. Mayfield H (1975) Suggestions for calculating nest success. Wilson Bull 87:456–466Google Scholar
  45. New M, Hewitson B, Stephenson DB, Tsiga A, Kruger A, Manhique A, Gomez B, Coelho CAS, Masisi DN, Kululanga E, Mbambalala E, Adesina F, Saleh H, Kanyanga J, Adosi J, Bulane L, Fortunata L, Mdoka ML, Lajoie R (2006) Evidence of trends in daily climate extremes over Southern and West Africa. J Geophys Res 111:D14102. doi: 10.1029/2005JD006289 CrossRefGoogle Scholar
  46. Nur N, Sydeman WJ (1999) Survival, breeding probability and reproductive success in relation to population dynamics of Brandt’s cormorants Phalacrocorax penicillatus. Bird Study 46(suppl):S92–S103CrossRefGoogle Scholar
  47. Osterblom H, Olsson O, Blenckner T, Furness RW (2008) Junk-food in marine ecosystems. Oikos 117:967–977CrossRefGoogle Scholar
  48. Pollock DE (1987) Simulation models of rock-lobster populations from areas of widely divergent yields on the Cape west coast. S Afr J Mar Sci 5:531–545CrossRefGoogle Scholar
  49. Powlesland RG, Luke IJ (2000) Breeding biology of little shags (Phalacrocorax melanoleucos) at Lindale, Wellington. Notornis 47:1–5Google Scholar
  50. Powlesland RG, Sharp SE, Smith ANH (2008) Aspects of the breeding biology of the pied shag (Phalacrocorax varius) at Makara Beach, Wellington, New Zealand. Notornis 55:69–76Google Scholar
  51. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  52. Randall RM (1983) Biology of the jackass penguin Spheniscus demersus (L.) at St. Croix Island, South Africa. PhD dissertation, University of Port ElizabethGoogle Scholar
  53. Roux J-P (2003) Risks. In: Molloy F, Reinikainen T (eds) Namibia’s marine environment. Directorate of Environmental Affairs of the Ministry of Environment and Tourism, Windhoek, pp 137–152Google Scholar
  54. Schreiber EA (2001) Climate and weather effects on seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC, Boca Ranton, pp 179–215CrossRefGoogle Scholar
  55. Seddon PJ, van Heezik YM (1991) Effects of hatching order, sibling asymmetries, and nest site on survival analysis of jackass penguin chicks. Auk 108:548–555Google Scholar
  56. Snow BK (1960) The breeding biology of the shag (Phalacrocorax aristotelis) on the island of Lundy, Bristol Channel. Ibis 102:554–775CrossRefGoogle Scholar
  57. Taylor MJ (1987) A colony of the little shag and the pied shag in which the plumage forms of the little shag freely interbreed. Notornis 34:41–50Google Scholar
  58. Underhill LG, Prys-Jones RP, Harrison JA, Martinez P (1992) Seasonal patterns of occurrence of Palaearctic migrants in southern Africa using atlas data. Ibis 134:99–108Google Scholar
  59. Wanless S, Harris MP, Redman P, Speakman JR (2005) Low energy value of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar Ecol Prog Ser 294:1–8CrossRefGoogle Scholar
  60. Wanless RM, Angel A, Cuthbert RJ, Hilton GM, Ryan PG (2007) Can predation by invasive mice drive seabird extinctions? Biol Lett 3:241–244PubMedCrossRefGoogle Scholar
  61. Weimerskirch H (2004) Diseases threaten Southern Ocean albatrosses. Polar Biol 27:374–379CrossRefGoogle Scholar
  62. Williams AJ (1987) New seabird breeding localities, and an extension of bank cormorant range, along the Namib coast of southern Africa. Cormorant 15:98–102Google Scholar
  63. Wolfaardt AJ, Underhill LG, Nel DC, Williams AJ, Visagie J (2008) Breeding success of African Penguins Spheniscus demersus at Dassen Island, especially after oiling following the Apollo Sea spill. Afr J Mar Sci 30:565–580CrossRefGoogle Scholar
  64. Zador SG, Parrish JK, Punt AE (2009) Factors influencing subcolony colonization and persistence in a colonial seabird, the common murre Uria aalge. Mar Ecol Prog Ser 376:283–293CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Richard B. Sherley
    • 1
    • 2
    Email author
  • Katrin Ludynia
    • 2
    • 3
  • Les G. Underhill
    • 2
    • 3
  • Rian Jones
    • 4
  • Jessica Kemper
    • 4
  1. 1.Centre for Behavioural Biology, School of Biological SciencesUniversity of BristolBristolUK
  2. 2.Animal Demography Unit, Department of ZoologyUniversity of Cape TownRondeboschSouth Africa
  3. 3.Marine Research InstituteUniversity of Cape TownRondeboschSouth Africa
  4. 4.Ministry of Fisheries and Marine ResourcesLüderitz Marine ResearchLüderitzNamibia

Personalised recommendations