Journal of Ornithology

, Volume 153, Issue 2, pp 405–411 | Cite as

Phylogeography and population structure of Krüper’s Nuthatch Sitta krueperi from Turkey based on microsatellites and mitochondrial DNA

  • Tamer Albayrak
  • Javier Gonzalez
  • Sergei V. Drovetski
  • Michael Wink
Original Article


Krüper’s Nuthatch Sitta krueperi is endemic to Anatolia, Lesvos Island and the western Caucasus region where it inhabits coniferous forests. To infer the phylogeographic structure of Krüper’s Nuthatch, we analyzed partial sequences of the mitochondrial cytochrome oxidase subunit I gene (COI; 605 bp) and allele variation at eight microsatellite loci from birds sampled across five localities in Turkey. A total of ten COI haplotypes were found among 68 individuals revealing three distinct haplotype groups; one each in northwestern, northeastern, and southern Turkey. However, there was evidence for secondary gene flow between the northwestern and the other two regions. Significant microsatellite differentiation was also found between northern and southern localities, but not between the two northern ones. This genetic structure is consistent with the isolation of these populations in different glacial refugia followed by establishing secondary contact after glacial retreat. The identified populations of this ‘near threatened’ species should be treated as separate conservation units.


Population genetics Evolution Anatolia Cytochrome oxidase subunit 1 gene Sitta krueperi 


Phylogeographie und Populationsstruktur des Türkenkleibers Sitta krueperi in der Türkei auf Grund vom Mikrosatelliten und mitochondrialer DNA

Der Türkenkleiber, Sitta krueperi, ist eine endemische Vogelart in Anatolien, Lesbos und im westlichen Kaukasus, wo er besonders Nadelwälder besiedelt. Zur Untersuchung seiner molekularen Phylogeographie wurden Teilsequenzen der mitochondrialen Cytochrom-Oxidase (COI, 605 Nucleotide) und die Allelvariation von 8 polymorphen Mikrosatellitenloci von 5 Kleiberpopulation in der Türkei untersucht. Unter den 68 untersuchten Individuen wurden 10 COI-Haplotypen ermittelt, die sich in drei Hauptgruppen in der nordwestlichen, nordöstlichen und südlichen Türkei abbilden lassen. Ein sekundärer Genfluss zwischen der nordwestlichen Population zu den beiden anderen wird vermutet. Die Mikrosatelliten-Analyse weist signifikante Unterschiede zwischen den nördlichen und südlichen Populationen, nicht aber zwischen den nördlichen Populationen auf. Die genetischen Daten sprechen für eine Isolierung der Populationen in unterschiedliche Eiszeitrefugien und die Entwicklung sekundärer Kontaktzonen nach der letzten Eiszeit. Die in dieser Arbeit ermittelten genetischen Gruppen sollten als getrennte Conservation Units erhalten werden, um das Überleben dieser auf der Vorwarnliste stehenden Art zu sichern.



This study was partly supported by TUBITAK and DFG (WI 719/32-1, AOBJ: 565239) cooperation. We thank Alice Cibois and Eric Pasquet for valuable comments, Muhammad Arshad and Hedi Sauer-Gürth for technical assistance in the laboratory and Metin Balçay kindly helped in the field work.

Supplementary material

10336_2011_756_MOESM1_ESM.doc (64 kb)
Supplementary material 1 (DOC 64 kb)


  1. Albayrak T, Erdogan A (2005a) Breeding ecology of Krueper’s nuthatch (Sitta krueperi) near Antalya, Turkey. Isr J Zool 51:309–314Google Scholar
  2. Albayrak T, Erdogan A (2005b) Observation on some behaviours of Krueper’s nuthatch (Sitta krueperi), a little-known West Palearctic bird. Turk J Zool 29:177–181Google Scholar
  3. Albayrak T, Bairlein F, Erdoğan A (2010) Habitat parameters and breeding density of Krüper’s Nuthatch Sitta krueperi in south eastern Turkey. Pol J Ecol 58:545–552Google Scholar
  4. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  5. Colak AH, Rotherham ID (2006) A review of the forest vegetation of Turkey: its status past and present and its future conservation. Biol Environ 106:343–354Google Scholar
  6. Cramps S, Perrins CM (1993) The birds of western palearctic. Oxford University Press, OxfordGoogle Scholar
  7. Dawson DA, Hanotte O, Greig C, Stewart IRK, Burke T (2000) Polymorphic microsatellites in the blue tit Parus caeruleus and their cross-species utility in 20 songbird families. Mol Ecol 9:1941–1944PubMedCrossRefGoogle Scholar
  8. Drovetski SV, Pearson SF, Rohwer S (2005) Streaked horned lark Eremophila alpestris strigata has distinct mitochondrial DNA. Conserv Genet 6:875–883CrossRefGoogle Scholar
  9. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  10. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  11. Haas SE, Smith JV, Kimball RT, Clark AM (2009) Isolation and characterization of polymorphic microsatellite markers for the brown-headed nuthatch (Sitta pusilla). Conserv Genet 10:1393–1395CrossRefGoogle Scholar
  12. Hagemeijer WJM, Blair MJ (1997) The EBCC atlas of European breeding birds: their distribution and abundance. Poyser, LondonGoogle Scholar
  13. Hall T (2004) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  14. Hampe A, Arroyo J, Jordano P, Petit RJ (2003) Rangewide phylogeography of a bird-dispersed Eurasian shrub: contrasting Mediterranean and temperate glacial refugia. Mol Ecol 12:3415–3426PubMedCrossRefGoogle Scholar
  15. Harrap S, Quinn D (1996) Tits, nuthatches and treecreepers. Christopher Helm, LondonGoogle Scholar
  16. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  17. Howes BJ, Lindsay B, Lougheed SC (2006) Range-wide phylogeography of a temperate lizard, the five-lined skink (Eumeces fasciatus). Mol Phylogenetics Evol 40:183–194CrossRefGoogle Scholar
  18. Hoyo JD, Elliott A, Christie D (eds) (2008) Handbook of the birds of the world: Penduline-tits to Shrikes, Lynx, BarcelonaGoogle Scholar
  19. Hughes PD, Woodward JC, Gibbard PL (2006) Quaternary glacial history of the Mediterranean mountains. Prog Phys Geogr 30:334–364CrossRefGoogle Scholar
  20. IUCN (2009) Red list of threatened species.
  21. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  22. Lohman DJ, Prawiradilaga DM, Meier R (2009) Improved COI barcoding primers for southeast Asian perching birds (Aves: Passeriformes). Mol Ecol Res 9:37–40CrossRefGoogle Scholar
  23. Löhrl H (1988) Etho-Ökologische Untersuchungen an Verschiedenen Kleiberarten (Sittidae). Bonner Zoologische Monographien Nr. 26Google Scholar
  24. Matthysen E (1998) The nuthatches. Poyser, LondonGoogle Scholar
  25. Pasquet E (1998) Phylogeny of the nuthatches of the Sitta canadensis group and its evolutionary and biogeographical implications. Ibis 140:150–156CrossRefGoogle Scholar
  26. Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  27. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  28. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  29. Richardson DS, Jury FL, Dawson DA, Salgueiro P, Komdeur J, Burke T (2000) Fifty seychelles warbler (Acrocephalus sechellensis) microsatellite loci polymorphic in Sylviidae species and their cross-species amplification in other passerine birds. Mol Ecol 9:2226–2231PubMedCrossRefGoogle Scholar
  30. Rousset F (2008) Genepop’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106CrossRefGoogle Scholar
  31. Saito DS, Saitoh T, Nishiumi I (2005) Isolation and characterization of microsatellite markers in Ijima’s leaf warbler, Phylloscopus ijimae (Aves: Sylviidae). Mol Ecol Notes 5:666–668CrossRefGoogle Scholar
  32. Sambrook J, Fritsch EF, Maniatis T (1989) Moleculer clooning: a labaratuary manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  33. Segelbacher G, Rolshausen G, Weis-Dootz T, Serrano D, Schaefer HM (2008) Isolation of 10 tetranucleotide microsatellite loci in the blackcap (Sylvia atricapilla). Mol Ecol Res 8:1108–1110CrossRefGoogle Scholar
  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  35. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Not 4:535–538CrossRefGoogle Scholar
  36. Vaurie C (1957) Systematic notes on Palaearctic birds, no. 29. The subfamilies Tichodromadinae and Sittinae. Am Mus Novit 1854:1–26Google Scholar
  37. Zink RM, Pavlova A, Drovetski S, Rohwer S (2008) Mitochondrial phylogeographies of five widespread Eurasian bird species. J Ornithol 149:399–413CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Tamer Albayrak
    • 1
  • Javier Gonzalez
    • 2
  • Sergei V. Drovetski
    • 3
  • Michael Wink
    • 2
  1. 1.Department of Biology, Faculty of Science and ArtMehmet Akif Ersoy UniversityBurdurTurkey
  2. 2.Department of Biology, Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany
  3. 3.CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos CampusVairãoPortugal

Personalised recommendations