Journal of Ornithology

, Volume 153, Issue 1, pp 249–253 | Cite as

Identification of polymorphic microsatellite loci for the endangered Kagu (Rhynochetos jubatus) by high-throughput sequencing

  • Bernhard C. Stoeckle
  • Jörn Theuerkauf
  • Sophie Rouys
  • Roman Gula
  • Almudena Lorenzo
  • Christophe Lambert
  • Tatjana Kaeser
  • Ralph Kuehn
Open Access
Technical Notes

Abstract

We used 454 pyro-sequencing to establish microsatellite markers for the endangered Kagu (Rhynochetos jubatus), a bird endemic to New Caledonia. We screened 52,583 reads to identify 60 microsatellites candidates and established 12 polymorphic loci. The number of alleles per locus ranged from 2 to 15, the observed heterozygosity from 0.046 to 0.818, the expected heterozygosity from 0.046 to 0.906, and the polymorphic information content (PIC) from 0.043 to 0.875. Two loci showed significant deviation from the Hardy–Weinberg equilibrium, while we did not detect any linkage between loci. The panel of microsatellites identified and characterized in this study will be useful to assess the genetic constitution of wild Kagu populations, which is necessary for effective conservation and breeding strategies of captive birds.

Keywords

Rhynochetidae Rhynochetos jubatus Next generation sequencing Short tandem repeats 

Zusammenfassung

Identifizierung von polymorphen Mikrosatelliten-Markern für den gefährdeten Kagu (Rhynochetos jubatus) mit Hilfe von Mega-Sequenzierung

Mit Hilfe der 454 Pyro-Sequenzierung haben wir Mikrosatelliten-Marker für den gefährdeten Kagu (Rhynochetos jubatus), einen endemischen Vogel Neukaledoniens etabliert. 52.583 Sequenzen wurden analysiert und 60 Kandidaten für Mikrosatelliten identifiziert, wobei 12 Loci sich als polymorph erwiesen. Die Anzahl der Allele pro Locus lag zwischen 2 und 15, die beobachtete Heterozygotie zwischen 0,046 und 0,818, die erwartete Heterozygotie zwischen 0,046 und 0,906 und der polymorphe Informationsgehalt (PIC) zwischen 0,043 und 0,875. Alle Loci befanden sich im Kopplungsgleichgewicht. Zwei Mikrosatellitensysteme zeigten eine signifikante Abweichung vom Hardy–Weinberg-Gleichgewicht. Die in dieser Studie identifizierten und charakterisierten Mikrosatelliten tragen dazu bei, die genetische Struktur der freilebenden Kagu-Populationen zu erfassen. Diese Kenntnis ist für effektive Erhaltungsstrategien der Wildpopulationen als auch für das Zuchtmanagement von in Gefangenschaft gehaltenen Vögeln erforderlich.

Introduction

The flightless Kagu (Rhynochetos jubatus) is an endemic, endangered bird of New Caledonia (Hannecart and Létocart 1980; IUCN 2010). The larger Kagu populations are restricted to rain forests that are usually far from human settlements (Hunt 1996), as the bird is vulnerable to dog predation (Hunt et al. 1996). Other invasive mammals (rats, cats, pigs), which are widespread throughout the Kagu range (Rouys and Theuerkauf 2003), have also been considered to be important threats to Kagus (Létocart and Salas 1997). However, there were few documented cases of predation by other predators than dogs (Gula et al. 2010). Because of this focus on the impact of invasive species, the possible threat related to the genetic variability of Kagu populations has received little attention. However, for over a century, the Kagu population has been declining (Warner 1948). The only survey of the Kagu population over the whole island, undertaken in 1992, indicated as few as 650 wild Kagus (Hunt 1996), separated into subpopulations. These findings led to the suggestion that the Kagu might have gone through a genetic bottleneck. Assessing the genetic constitution of a population requires an effective analytical tool such as polymorphic microsatellites, which provides conservationists with the current levels of genetic variability, needed for effective conservation in situ (restocking, reintroduction, prioritizing different sites) and ex situ (breeding strategies of captive birds), as well as for research on reproductive systems (Theuerkauf et al. 2009a, b). Since 2003, we have therefore attempted to develop informative microsatellite markers for the Kagu.

Our early attempts using cloning from genomic libraries following the procedure described in Estoup et al. (1993) were unfortunately not successful. By screening 1,500 recombinant clones, a total of 15 positive clones was detected and 7 clones for sequencing were selected after pre-analyses according to Geist et al. (2003). Four clones contained microsatellites suitable for primer design. Two primer pairs amplified products of predicted size at low rates of stuttering but the PCR products showed no microsatellite variability. In their review, Zane et al. (2002) described a low frequency of microsatellites in avian genomes, which explains the low success rate of detecting microsatellites using cloning procedures. The efficiency in detecting microsatellites using next generation sequencing has been proved by Abdelkrim et al. (2009), Allentoft et al. (2009), Santana et al. (2009), Csencsics et al. (2010), and Stoeckle and Kuehn (2011). We therefore used 454 pyro-sequencing to establish polymorphic microsatellite markers for the Kagu. This article reports the first identification and characterisation of microsatellites, which now allows the assessing of the genetic constitution of Kagu populations.

Methods

We collected down feathers from the rump of 20 wild Kagus of a population in the Parc Provincial de la Rivière Bleue, south New Caledonia (22°3–12′S, 166°33–46′E), from 2004 to 2009. We plucked out about 10 feathers without touching their roots, placed them in hermetically sealed bags, and stored them at 4°C. Additionally, we sampled 2 Kagus from other populations: a feather sample from 1 wild-caught Kagu of a population near Poindimié in the northeast of New Caledonia (20°56′S, 165°20′E), and a tissue sample (stored in 95% alcohol) from 1 deceased captive-bred Kagu (parents were wild-caught) of the Parc Zoologique et Forestier in Nouméa, New Caledonia (22°15′S, 166°27′E).

We isolated DNA from the tissue sample following Hogan et al. (1994). The feather DNA was isolated according to Segelbacher (2002). The DNA of the tissue sample was subjected to 454 sequencing at the GS-FLX LAB (Eurofins MWG Operon, Ebersberg, Germany). A 1/16 plate generated 52,583 reads (13.7 Mb) with an average length of 261 bp. A single Fasta file containing all reads was screened for di-, tri- and tetra-nucleotide repeats using MSATCOMMANDER (Faircloth 2008) with at least six repeats for di-nucleotide and four for tri- and tetra-nucleotide microsatellites. We detected 349 loci (104 di-nucleotides, 175 tri-nucleotides, 70 tetra-nucleotides) suitable for primer design with Primer3 software (Rozen and Skaletsky 2000) using the default settings. Subsequently, we ignored loci with extremely too long and compound interrupted repeat stretches as described by Opgenoorth (2009). In order to detect identical sequences within the remaining set of potential microsatellites, we compared the sequences by similarity and additionally aligned them with the software GENEIOUS v4.7 (Drummond et al. 2009). Finally, out of 231 potential loci (65 di-nucleotides, 117 tri-nucleotides, 49 tetra-nucleotides), we randomly ordered 60 primer pairs flanking 25 di-, 25 tri- and 10 tetra-nucleotide from Biomers (Ulm, Germany). The fluorescent labeling was done according to Schuelke (2000) with a universal M13 Primer. We used gradient PCR-protocol (50–60°C) (Mastercycler Gradient, Eppendorf, Germany) to test the 60 primer pairs on DNA extracted from 3 individuals and obtained amplified products of expected size with low rates of intense stuttering for 30 of the 60 microsatellite markers.

For genotyping, we used the DNA of the 22 sampled individuals. Polymerase chain reactions (PCRs) were performed in a total volume of 15 μl with the following components: 25 ng of genomic DNA, 0.2 μM of each reverse primer, and the M13 universal primer (fluorescently labeled with 6-FAM), 0.05 μM of each forward primer, 0.2 mM of each dNTP (Solis BioDyne), 1.5–3 mM MgCl2 (Table 1), 1 × PCR buffer (Solis BioDyne), and 0.5 U Taq DNA Polymerase (FIREPol®, Solis BioDyne). For PCR amplification, we used a thermal cycler (Mastercycler Gradient, Eppendorf, Germany) with the following PCR profile: initial denaturation at 94°C for 5 min, 30 cycles of 30 s at 94°C, 30 s at the primer specific annealing temperature (Table 1), 45 s at 72°C, followed by eight cycles of 30 s at 94°C, 45 s at 53°C, 45 s at 72°C, and a final elongation step at 72°C for 10 min. PCR products were separated on 6% polyacrylamide gels on an ABI Prism 377 automated sequencer (Perkin Elmer) and scored in reference to a ROX standard (79–540 bp) by GENESCAN® 3.1.2 and GENOTYPER® 2.5 software (Applied Biosystems, Foster City, CA, USA). We repeated the PCR amplification and genotyping of DNA extracts from feathers three times as the use of this material as a source of DNA can lead to genotyping errors, mainly allelic dropout (Taberlet and Luikart 1999; Segelbacher 2002). We used GENEPOP 4.0 (Rousset 2008) to calculate the number of alleles, to generate allele frequencies, expected (HE) and observed (HO) heterozygosities, and to test for linkage disequilibrium and deviations from Hardy–Weinberg equilibrium (frequency of alleles in a large, interbreeding population characterized by random mating, mendelian inheritance, and the absence of migration, mutation, and selection). For calculating the polymorphic information content (PIC), we used the EXCEL MICROSATELLITE TOOLKIT (Park 2001). MICRO-CHECKER 2.2.3 (Van Oosterhout et al. 2004) was used to test the dataset for genotyping errors and for the presence of null alleles.
Table 1

Characteristics of 12 microsatellite loci for the Kagu (Rhynochetos jubatus): locus designation, GenBank accession nb., repeat motif, primer sequences, annealing temperature (TA), MgCl2 concentration, number of observed alleles (NA), allele size range (including length of M13 primer), PIC values, level of observed (HO) and expected (HE) heterozygosity per locus

Locus

GenBank accession nb.

Repeat motif

Primer sequences (5′–3′)

TA (°C)

MgCl2

NA

Allelic size range (bp)

PIC

HO

HE

RTY19

HM565115

(ATT)15

F: GGGGAAACCATTTTTCATCTC

R: CCACAGCGTTGTTTCTTGTG

60

3.0

15

222–243

0.875

0.8182

0.9059

RTY21

HM565116

(AT)14

F: CAACTTTCTGCAACTGCTCTG

R: CTGGGCCGTGATTCTTACAC

57

3.0

5

186–200

0.648

0.5909

0.7188

RTY35

HM565117

(AC)8

F: TGGTGGCACACTCCAAAATA

R: GCACAACACCTCTGTGCCTA

60

3.0

2

152–172

0.370

0.5909

0.5021

RTY37

HM565118

(GT)8

F: CAGGCTGAGAATGCCAAAAT

R: AGTACCCTGGAGTGGTTTGC

60

3.0

3

187–191

0.541

0.4545

0.6353

RTY38

HM565119

(CT)8

F: CAGCTGCAAGATTTCCCATA

R: GGACCCTGATGAACAACACA

60

1.5

2

195–197

0.406

0.7273

0.5317

RTY40

HM565120

(GT)8

F: GAATGGGTTTTGAGGTATTGGA

R: TCAACACAAATGTGGAAGTGTTT

60

3.0

2

167–169

0.290

0.4545

0.3594

RTY47a

HM565121

(GT)7

F: CGACTACAGCTTACATAATCCTCCT

R: GGGTAGGGCACAGACAGAAA

54

1.5

2

263–265

0.305

0.0455

0.3837

RTY54

HM565122

(GCCT)7

F: ACTACAGCTTGTTAGAAATTCCTTC

R: GTGCCAACTTCCAAAACATCG

55

3.0

2

186–190

0.043

0.0455

0.0455

RTY55

HM565123

(AAAT)9

F: TTTCACAAAGACTCCTCAGTATAAG

R: AGCAGCCTATTTCATTTTGTCC

55

3.0

4

241–253

0.651

0.8182

0.7199

RTY56

HM565124

(AAAC)5

F: CCTGCCCAGAGGTAGGAAG

R: GGTCCTCACCAGGAAGAAAAC

55

3.0

3

177–185

0.514

0.8182

0.6057

RTY57a

HM565125

(ATCC)15

FTGTCTTCTTTCTGTCTGTGTGTC

R: CGCTTGTTTCATGCTAAGACG

55

3.0

5

154–178

0.644

0.5454

0.7104

RTY58

HM565126

(ATCT)4…(ATCT)13

F: CGACTACAGCTCCCTATAAATCAC

R: GACTCCTCTTCCTCCACCC

55

3.0

4

159–175

0.648

0.7273

0.7199

aLoci that deviated from Hardy–Weinberg equilibrium after Bonferroni correction, P = 0.004

Results and conclusion

Out of 30 microsatellite loci tested on the 22 Kagus, 18 were monomorphic and 12 were polymorphic with 2–15 alleles, with an average of 4.2 alleles per locus (Table 1). Observed heterozygosity values ranged from 0.046 to 0.818, and those for expected heterozygosity from 0.046 to 0.906. Regarding the PIC values, 7 microsatellites are highly informative (PIC > 0.5), 4 are reasonably informative (0.5 > PIC > 0.25), and 1 is only slightly informative (PIC < 0.25) by using the classification of Botstein et al. (1980) (Table 1). By genotyping 22 individuals, we detected a total of 49 different alleles.

We detected no linkage between locus pairs in the tested Kagu samples. The test on Hardy–Weinberg equilibrium for each locus revealed deviations in two loci (RTY47 and RTY57) after Bonferroni correction (Table 1). This deviation might be caused by population substructure of the 22 selected samples. MICRO-CHECKER did not detect any genotyping error (e.g. scoring error) among the dataset, although possible null alleles were likely at the locus RTY47. The markers identified in this study will allow the assessing of the life history, mating strategies and sexual selection patterns of Kagus. We also expect that the markers will improve the current captive breeding programmes in order to maintain a maximum genetic diversity. Furthermore, this study demonstrated that the next-generation sequencing is a powerful technique to isolate microsatellites of species for which conventional methods were unsuccessful.

Notes

Acknowledgments

This study was part of the research project “Impact of introduced mammals and habitat loss on endemic birds of New Caledonia”, done in cooperation with the Province Sud (New Caledonia), which issued all permits for this study, and financed by the Province Sud, Technische Universität München (Germany), Polish Ministry of Science and Higher Education (Grant 2P04F 001 29), Loro Parque Fundación (Spain), Conservation des Espèces et Populations Animales (France), La Fondation Nature et Découvertes (France), Fonds für bedrohte Papageien (Germany), Strunden-Papageien-Stiftung (Germany), and Zoologische Gesellschaft für Arten- und Populationsschutz (Germany). We thank M. Broersen, C. Chatreau, P. de Pous, D. Dingemans, S. Duijns, B. Michielsen, E. Minnema, L. Nijdam, H. Theuerkauf, J. van Dijk, M. van Opijnen, J. Wardenaar, N. Petit, and many others for their help during field work; C. Matton and M. Bonzon for taking samples from captive Kagus; M. Bauer, H. Saar, A. Holzwarth and A. Batel for their help during laboratory work; and anonymous reviewers for useful comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Abdelkrim J, Robertson BC, Stanton J-AL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. BioTechniques 46:185–192PubMedCrossRefGoogle Scholar
  2. Allentoft M, Schuster S, Holdaway R, Hale M, McLay E, Oskam C, Gilbert T, Spencer P, Willerslev E, Bunce M (2009) Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. BioTechniques 46:195–200PubMedCrossRefGoogle Scholar
  3. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  4. Csencsics D, Brodbeck S, Holderegger R (2010) Cost-effective, species-specific microsatellite development for the endangered dwarf bulrush (Typha minima) using next-generation sequencing technology. J Hered 101:789–793Google Scholar
  5. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.7 (http://www.geneious.com/)
  6. Estoup A, Solignac M, Harry M, Cornuet JM (1993) Characterisation of (GT)n (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Res 21:1427–1431PubMedCrossRefGoogle Scholar
  7. Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94PubMedCrossRefGoogle Scholar
  8. Geist J, Rottmann O, Schröder W, Kuehn R (2003) Development of microsatellite markers for the endangered freshwater pearl mussel Margaritifera margaritifera L. (Bivalvia: Unionoidea). Mol Ecol Notes 3:444–446CrossRefGoogle Scholar
  9. Gula R, Theuerkauf J, Rouys S, Legault A (2010) An audio/video surveillance system for wildlife. Eur J Wildl Res 56:803–807CrossRefGoogle Scholar
  10. Hannecart F, Létocart Y (1980) Oiseaux de Nouvelle-Calédonie et des Loyautés, vol. 1. Editions Cardinalis, Nouméa, Nouvelle-CalédonieGoogle Scholar
  11. Hogan BLM, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Woodbury, New YorkGoogle Scholar
  12. Hunt GR (1996) Environmental variables associated with population patterns of the kagu Rhynochetos jubatus of New Caledonia. Ibis 138:778–785CrossRefGoogle Scholar
  13. Hunt GR, Hay R, Veltman CJ (1996) Multiple kagu Rhynochetos jubatus deaths caused by dog attacks at a high-altitude study site on Pic Ningua, New Caledonia. Bird Conserv Int 6:295–306CrossRefGoogle Scholar
  14. IUCN (2010) IUCN Red List of Threatened Species. Version 2010.3 (http://www.iucnredlist.org). Downloaded on 20 Sept 2010
  15. Létocart Y, Salas M (1997) Spatial organisation and breeding of kagu Rhynochetos jubatus in Rivière Bleue Park, New Caledonia. Emu 97:97–107CrossRefGoogle Scholar
  16. Opgenoorth L (2009) Identification and characterization of microsatellite marker in the tetraploid Juniperus tibetica Kom. using next generation sequencing. Conserv Genet Resour 1:253–255CrossRefGoogle Scholar
  17. Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. PhD thesis, University of DublinGoogle Scholar
  18. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  19. Rouys S, Theuerkauf J (2003) Factors determining the distribution of introduced mammals in nature reserves of the southern province, New Caledonia. Wildl Res 30:187–191CrossRefGoogle Scholar
  20. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  21. Santana Q, Coetzee M, Steenkamp E, Mlonyeni O, Hammond G, Wingfield M, Wingfield B (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. BioTechniques 46:217–223PubMedCrossRefGoogle Scholar
  22. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nature Biotechnol 18:233–234CrossRefGoogle Scholar
  23. Segelbacher G (2002) Noninvasive genetic analysis in birds: testing reliability of feather samples. Mol Ecol Notes 2:367–369Google Scholar
  24. Stoeckle BC, Kuehn R (2011) Identification of 18 polymorphic microsatellite loci in the spruce bark beetle Ips typographus (Coleoptera: Scolytidae) using high-throughput sequence data. Eur J Entomol 108:169–171Google Scholar
  25. Taberlet P, Luikart G (1999) Non-invasive genetic sampling and individual identification. Biol J Linn Soc 68:41–55CrossRefGoogle Scholar
  26. Theuerkauf J, Rouys S, Mériot JM, Gula R (2009a) Group territoriality as a form of cooperative breeding in the flightless kagu of New Caledonia. Auk 126:371–375CrossRefGoogle Scholar
  27. Theuerkauf J, Rouys S, Mériot JM, Gula R, Kuehn R (2009b) Cooperative breeding, mate guarding, and nest sharing in two parrot species of New Caledonia. J Ornithol 150:791–797CrossRefGoogle Scholar
  28. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  29. Warner DW (1948) The present status of kagu, Rhynochetos jubatus, on New Caledonia. Auk 65:287–288Google Scholar
  30. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Bernhard C. Stoeckle
    • 1
  • Jörn Theuerkauf
    • 2
  • Sophie Rouys
    • 3
  • Roman Gula
    • 2
  • Almudena Lorenzo
    • 4
  • Christophe Lambert
    • 5
  • Tatjana Kaeser
    • 1
  • Ralph Kuehn
    • 1
  1. 1.Unit of Molecular Zoology, Chair of Zoology, Department of Animal ScienceTechnische Universität MünchenFreisingGermany
  2. 2.Museum and Institute of ZoologyPolish Academy of SciencesWarsawPoland
  3. 3.Conservation Research New CaledoniaNouméa CedexNew Caledonia
  4. 4.Parc Zoologique et ForestierDirection de l’EnvironnementNouméa CedexNew Caledonia
  5. 5.Chargé de mission pour la recherche et le développement durable, Secrétariat GénéralNouméa CedexNew Caledonia

Personalised recommendations