Journal of Ornithology

, Volume 153, Issue 1, pp 239–247 | Cite as

A real-time PCR protocol for simple and fast quantification of blood parasite infections in evolutionary and ecological studies and some data on intensities of blood parasite infections in a subtropical weaverbird

  • Thomas W. P. FriedlEmail author
  • Elisabeth Groscurth
Technical Notes


In several fields of research, such as immunoecology, evolutionary ecology, sexual selection, parasitology or host-parasite coevolution, a reliable quantitative assessment of blood parasite infections is necessary for testing specific predictions regarding relationships between the degree of infections and various parameters of interest. Here, we present a relatively simple, fast and reliable protocol based on quantitative real-time PCR to determine the intensity of infections with blood parasites of the genus Plasmodium and/or Haemoproteus in blood samples of birds, using male Red Bishops (Euplectes orix; Ploceidae, Passeriformes) as example. The intensity of infections is assessed by amplification of a specific 85-bp fragment within the plastid-like large subunit ribosomal-RNA (LSU-rRNA) gene, which is conservative across a range of Plasmodium and Haemoproteus species. By measuring the accumulation of the product during the PCR (in real-time) using a fluorescent labelled oligonucleotide probe, a threshold can be determined at which the fluorescence of the product raises above background level. The starting quantity of blood parasites in the investigated blood samples is then calculated by comparison with thresholds determined for standards of known quantity (clones of a 594-bp fragment within the LSU-rRNA gene from Plasmodium falciparum including the target sequence) in the same PCR reaction. With this method, blood parasites were detected in 123 out of 127 samples from male Red Bishops, with a median of 0.059 blood parasites per 100 blood cells (range 0–19.2 blood parasites per 100 blood cells). The method described here produces consistent and reproducible data, can easily be modified and extended to detect and quantify blood parasites at different systematic levels, and thus has broad application to many researchers in the field of evolutionary and behavioral ecology.


Avian haemosporidians Haemoproteus Intensity of infections Plasmodium Quantitative real-time PCR 


Ein Real-Time PCR Protokoll zur einfachen und schnellen Quantifizierung von Blutparasitenbefall in evolutionsbiologischen und ökologischen Studien, und einige Daten zu Intensitäten von Blutparasitenbefall bei subtropischen Webervögeln

In vielen Forschungsfeldern wie Immunoökologie, Evolutionsökologie, sexuelle Selektion, Parasitologie und Parasit-Wirts-Koevolution ist eine verlässliche Quantifizierung von Blutparasitenbefall notwendig, um spezifische Vorhersagen zum Zusammenhang zwischen der Intensität von Blutparasitenbefall und verschiedenen Parametern von Interesse zu testen. Hier stellen wir am Beispiel von Männchen des Oryxwebers (Euplectes orix; Ploceidae, Passeriformes) ein relativ einfaches, schnelles und verlässliches, auf quantitativer Real-Time PCR beruhendes Protokoll vor, mit dem die Intensität des Befalls mit Blutparasiten der Gattungen Plasmodium und/oder Haemoproteus bestimmt werden kann. Die Intensität des Befalls wird mittels Amplifikation eines 85 bp Fragments des Gens der ribosomalen RNA aus der großen Untereinheit des Ribosoms (LSU-rRNA) ermittelt, welches spezifisch für die beiden Gattungen Plasmodium und Haemoproteus ist. Durch die Messung der Zunahme des PCR-Produkts mittels einer mit einem Fluoreszenzfarbstoff markierten Oligonukleotidsonde in Echtzeit kann eine Schwelle bestimmt werden, bei der die durch die Produktamplifikation bedingte Fluoreszenz über die Hintergrundfluoreszenz ansteigt. Die Menge an Blutparasiten in den untersuchten Blutproben wird dann durch den Vergleich mit in derselben PCR-Reaktion ermittelten Schwellenwerten von Standards mit bekannter Menge an Blutparasiten-DNA (Klone eines 594 bp Fragments des LSU-rRNA Gens von Plasmodium falciparum, welches die Zielsequenz beinhaltet) bestimmt. Mit dieser Methode wurden Blutparasiten in 123 von 127 Blutproben von Oryxwebermännchen mit einem Median von 0.059 Blutparasiten pro 100 Blutzellen (Bereich 0 bis 19.2 Blutparasiten pro 100 Blutzellen) detektiert. Die hier beschriebene Methode ergibt konsistente und reproduzierbare Daten, kann leicht für die Detektion und Quantifizierung von Blutparasiten verschiedener taxonomischer Ebenen modifiziert und erweitert werden, und ist demzufolge von großem Interesse für viele Forscher auf den Gebieten Evolutionsbiologie und Verhaltensökologie.



We are grateful to the National Parks Board of South Africa and the Chief Directorate Environmental Affairs of the Department of Economic Affairs, Environment and Tourism of the Eastern Cape Province for permission to conduct this study in the Addo Elephant National Park. We would like to thank the whole park staff of the Addo Elephant National Park, in particular John and Melanie Adendorff, for continuous support, Nicole Geberzahn and Lars Holst Hansen for their help in collecting Red Bishop blood samples in the field, Armin Michel for advice regarding primer and probe design, and Thomas Jacobs from the Bernhard-Nocht-Institut für Tropenmedizin for providing DNA samples of Plasmodium falciparum. An anonymous reviewer provided useful comments on an earlier version of this manuscript. This study was funded by the Deutsche Forschungsgemeinschaft (DFG Kl 13-1,2 and FR 2096/2-2). The experiments and procedures conducted here comply with German and South African law.

Supplementary material

10336_2011_735_MOESM1_ESM.doc (104 kb)
Supplementary material 1 (DOC 139 kb)


  1. Beier JC, Strandberg J, Stoskopf MK, Craft C (1981) Mortality in robins (Turdus migratorius) due to avian malaria. J Wildl Dis 17:247–250PubMedGoogle Scholar
  2. Bennett GF, Earle RA, Du Toit H, Huchzermeyer FW (1992) A host-parasite catalogue of the haematozoa of the sub-saharan birds. Onderstepoort J Vet Res 59:1–73PubMedGoogle Scholar
  3. Bennett GF, Peirce MA, Ashford RW (1993) Avian Haematozoa: mortality and pathogenicity. J Nat Hist 27:993–1001CrossRefGoogle Scholar
  4. Bensch S, Stjernman M, Hasselquist D, Östman Ö, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589CrossRefGoogle Scholar
  5. Campbell TW (1995) Avian hematology and cytology, 2nd edn. Iowa State University Press, AmesGoogle Scholar
  6. Dale S, Kruszewicz A, Slagsvold T (1996) Effects of blood parasites on sexual and natural selection in the pied flycatcher. J Zool 238:373–393CrossRefGoogle Scholar
  7. Dorak MT (2006) Real-time PCR. Taylor & Francis, New YorkGoogle Scholar
  8. Durrant KL, Beadell JS, Ishtiaq F, Graves GR, Olson SL, Gering E, Peirce MA, Milensky CM, Schmidt BK, Gebhard C, Fleischer RC (2006) Avian haematozoa in South America: a comparison of temperate and tropical zones. Ornithol Monogr 60:98–111CrossRefGoogle Scholar
  9. Edler R, Klump GM, Friedl TWP (2004) Do blood parasites affect reproductive performance in male red bishops (Euplectes orix)? A test of the Hamilton-Zuk hypothesis. Ethol Ecol Evol 16:315–328CrossRefGoogle Scholar
  10. Fallon SM, Ricklefs RE (2008) Parasitemia in PCR-detected Plasmodium and Haemoproteus infections in birds. J Avian Biol 39:514–522CrossRefGoogle Scholar
  11. Fallon SM, Ricklefs RE, Swanson BL, Bermingham E (2003) Detecting avian malaria: an improved polymerase chain reaction diagnostic. J Parasitol 89:1044–1047PubMedCrossRefGoogle Scholar
  12. Feldman RA, Freed LA, Cann RL (1995) A PCR test for avian malaria in Hawaiian birds. Mol Ecol 4:663–673PubMedCrossRefGoogle Scholar
  13. Friedl TWP (2004) Breeding behavior of the red bishop (Euplectes orix): a synthesis and new observations. Vogelwarte 42:178–190Google Scholar
  14. Friedl TWP, Klump GM (1999) Determinants of male mating success in the red bishop (Euplectes orix). Behav Ecol Sociobiol 46:387–399CrossRefGoogle Scholar
  15. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387Google Scholar
  16. Hasselquist D, Östman Ö, Waldenström J, Bensch S (2007) Temporal patterns of occurrence and transmission of the blood parasite Haemoproteus payevskyi in the great reed warbler Acrocephalus arundinaceus. J Ornithol 148:401–409CrossRefGoogle Scholar
  17. Hayworth AM, van Riper C, Weathers WW (1987) Effects of Plasmodium relictum on the metabolic rate and body temperature in canaries (Serinus canaria). J Parasitol 73:850–853PubMedCrossRefGoogle Scholar
  18. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994PubMedCrossRefGoogle Scholar
  19. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802PubMedCrossRefGoogle Scholar
  20. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Nat Acad Sci USA 88:7276–7280PubMedCrossRefGoogle Scholar
  21. Jarvi SI, Schultz JJ, Atkinson CT (2002) PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88:153–158PubMedGoogle Scholar
  22. Knowles SCL, Nakagawa S, Sheldon BC (2009) Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Funct Ecol 23:405–415CrossRefGoogle Scholar
  23. Krone O, Waldenström J, Valkiūnas G, Lessow O, Müller K, Iezhova TA, Fickel J, Bensch S (2008) Haemosporidian blood parasites in European birds of prey and owls. J Parasitol 94:709–715PubMedGoogle Scholar
  24. Maclean GL (1993) Roberts’ birds of Southern Africa, 6th edn. John Voelcker Bird Book Fund, Cape TownGoogle Scholar
  25. Merilä J, Sheldon BC, Lindström K (1999) Plumage brightness in relation to haematozoan infections in the greenfinch Carduelis chloris: bright males are a good bet. Ecoscience 6:12–18Google Scholar
  26. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Lond B 267:2507–2510CrossRefGoogle Scholar
  27. Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11:19–26CrossRefGoogle Scholar
  28. Ots I, Horak P (1998) Health impact of blood parasites in breeding great tits. Oecologia 116:441–448CrossRefGoogle Scholar
  29. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380PubMedCrossRefGoogle Scholar
  30. Richard FA, Sehgal RNM, Jones HI, Smith TB (2002) A comparative analysis of PCR-based detection methods for avian malaria. J Parasitol 88:819–822PubMedGoogle Scholar
  31. Samour J (2000) Avian medicine. Hartcourt Publishers, LondonGoogle Scholar
  32. Schall JJ, Staats CM (1997) Parasites and the evolution of extravagant male characters: Anolis lizards on Caribbean islands as a test of the Hamilton-Zuk hypothesis. Oecologia 111:543–548CrossRefGoogle Scholar
  33. Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321PubMedCrossRefGoogle Scholar
  34. Tan TMC, Nelson JS, Ng HC, Ting RCY, Kara UAK (1997) Direct PCR amplification and sequence analysis of extrachromosomal Plasmodium DNA from dried blood spots. Acta Trop 68:105–114PubMedCrossRefGoogle Scholar
  35. Tiersch TR, Wachtel SS (1991) On the evolution of genome size of birds. J Hered 82:363–368PubMedGoogle Scholar
  36. Valkiūnas G (2001) Blood parasites of birds: some obstacles in their use in ecological and evolutionary biology studies. Avian Ecol Behav 7:87–100Google Scholar
  37. Valkiūnas G, Iezhova TA, Krizanauskiene A, Palinauskas V, Sehgal RNM, Bensch S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol 94:1395–1401PubMedCrossRefGoogle Scholar
  38. Waldenström J, Bensch S, Hasselquist D, Östman Ö (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194PubMedCrossRefGoogle Scholar
  39. Yorinks N, Atkinson CT (2000) Effects of malaria on activity budgets of experimentally infected juvenile apapane (Himatione sanguinea). Auk 117:731–738CrossRefGoogle Scholar
  40. Zehtindjiev P, Ilieva M, Westerdahl H, Hansson B, Valkiūnas G, Bensch S (2008) Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus. Exp Parasitol 119:99–110PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  1. 1.AG Zoophysiologie und Verhalten, Institut für Biologie und UmweltwissenschaftenCarl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations