Advertisement

Journal of Ornithology

, Volume 153, Issue 1, pp 53–74 | Cite as

Revealing the contributions of reproduction and survival to the Europe-wide decline in meadow birds: review and meta-analysis

  • Maja Roodbergen
  • Bert van der Werf
  • Hermann Hötker
Review

Abstract

In this review, we summarize available data on nest success, chick survival and reproductive output, and adult and juvenile survival of five meadow breeding waders in Europe: Eurasian Oystercatcher (Haematopus ostralegus), Northern Lapwing (Vanellus vanellus), Black-tailed Godwit (Limosa limosa), Eurasian Curlew (Numenius arquata), and Common Redshank (Tringa totanus). The survival data from the assembled studies did not show an overall decline in adult survival in any of these species. However, our meta-analyses on reproduction data show that chick survival declined strongly in the last 40 years in western Europe and that nest success declined in eastern Europe in the period 1995–2005, in Scandinavia in the period 1985–2005, and in western Europe in the period 1950–1980. Predation of nests has increased by c. +40% in all five species in western Europe during the last four decades. Results on reproductive output, the number of fledglings produced per breeding pair, were less clear. A decline was apparent in Eurasian Oystercatcher in the period 1963–2005; an initial decline in 1953–1990, but slight recent (1990–2006) recovery in Northern Lapwing; an initial decline in Black-tailed Godwit in the period 1985–1995, but again slight increase from 1995 onwards; no trend in Common Redshank (1992–2006) nor in Eurasian Curlew (1961–2006). In all five species the results indicate that present population declines are caused by a decrease in reproduction, not in adult survival, and that reproductive output is presently too low to compensate for adult mortality.

Keywords

Meadow birds Survival Nest success Reproductive output Agricultural intensification Predation Demographic parameters 

Zusammenfassung

Wie Überlebens- und Reproduktionsraten zum Europa-weiten Rückgang von Wiesen-Limikolen beitragen: Überblick und Meta-Analyse

In dieser Übersichtsarbeit fassen wir die verfügbaren Daten über Schlupferfolg, Überlebensrate der Küken, Bruterfolg sowie Überlebensrate der Alt- und Jungvögel von fünf in Europa auf Wiesen brütenden Limikolenarten: [Austernfischer (Haematopus ostralegus), Kiebitz (Vanellus vanellus), Uferschnepfe (Limosa limosa), Großer Brachvogel (Numenius arquata) und Rotschenkel (Tringa totanus)] zusammen. Die Überlebensdaten der gesammelten Studien zeigten für keine der Arten einen Rückgang der Überlebensrate der Altvögel. Unsere Meta-Analyse der Reproduktionsdaten zeigte jedoch, dass die Kükenüberlebensraten in den vergangenen 40 Jahren in Westeuropa stark zurückgegangen sind. Der Schlupferfolg sank in Osteuropa im Zeitraum 1995–2005, in Skandinavien im Zeitraum 1985–2005 und in Westeuropa im Zeitaum 1950–1980. Die Prädation nahm bei allen fünf Arten in Westeuropa innerhalb der letzten vier Jahrzehnte um ca. 40% zu. Die Ergebnisse zum Bruterfolg (Zahl der jährlich pro Paar produzierten Jungvögel) waren weniger klar. Für den Austernfischer wurde ein Rückgang im Zeitraum 1963–2005 deutlich. Für den Kiebitz gab es einen anfänglichen Rückgang 1953–1990, aber eine leichte Erholung 1990–2006. Nach einem anfänglichen Rückgang von 1985–1995 erholte sich auch der Bruterfolg der Uferschnepfe seit 1995 leicht. Rotschenkel (1992–2006) und Großer Brachvogel (1961–2006) zeigten keinen Trend. Für alle fünf Arten deuten die Ergebnisse darauf hin, dass die gegenwärtigen Populationsrückgänge durch eine verminderte Reproduktion und nicht durch eine verminderte Überlebensrate der Altvögel verursacht werden. Die gegenwärtigen Reproduktionsraten sind zu niedrig, um die Adultmortalität zu kompensieren.

Notes

Acknowledgments

This research was financed by the Dutch Research Organisation NWO. The collection of data on breeding success was supported by the Deutsche Bundesstiftung Umwelt, Project 22718 “Aktionsplan für Wiesenvögel und Feuchtwiesen”. We would like to thank Hans Schekkerman, Chris Klok, Theunis Piersma, Julia Schroeder, Michael Exo and two anonymous reviewers for their useful comments on the manuscript and Eelke Jongejans for help with the figures.

References

  1. Aebischer NJ (1999) Multi-way comparisons and generalized linear models of nest success: extensions of the Mayfield method. Bird Study 46:22–31CrossRefGoogle Scholar
  2. Atkinson PW, Clark NA, Bell MC, Dare PJ, Clark JA, Ireland PL (2003) Changes in commercially fished shellfish stocks and shorebird populations in the Wash, England. Biol Conserv 114:127–141CrossRefGoogle Scholar
  3. Atkinson PW, Clark NA, Dodd SG, Moss D (2005) Changes in fisheries practices and Oystercatcher survival, recruitment and body mass in a marginal Cockle fishery. Ardea 93:199–212Google Scholar
  4. Bainbridge IP, Minton CDT (1978) The Migration and Mortality of the Curlew in Britain and Ireland. Bird Study 25:39–50CrossRefGoogle Scholar
  5. Bak B, Ettrup H (1982) Studies on migration and mortality of the Lapwing Vanellus vanellus in Denmark. Dan Rev Game Biol 12:1–20Google Scholar
  6. Beintema AJ, Drost N (1986) Migration of the Black-tailed Godwit. Gerfaut 76:37–62Google Scholar
  7. Bellebaum J (2003) Changes in Red Fox numbers in eastern Germany after rabies vaccination. ZJagdwissen 49:41–49CrossRefGoogle Scholar
  8. Berg A (1994) Maintenance of populations and causes of population-changes of Curlews Numenius arquata breeding on farmland. Biol Conserv 67:233–238CrossRefGoogle Scholar
  9. Berg A, Jonsson M, Lindberg T, Kallebrink KG (2002) Population dynamics and reproduction of Northern Lapwings Vanellus vanellus in a meadow restoration area in central Sweden. Ibis 144:E131–E140CrossRefGoogle Scholar
  10. Besbeas P, Freeman SN, Morgan BJT, Catchpole EA (2002) Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58:540–547PubMedCrossRefGoogle Scholar
  11. BirdLife International (2004a) Birds in Europe: population estimates, trends and conservation status. BirdLife International, CambridgeGoogle Scholar
  12. BirdLife International (2004b) Birds in the European Union: a status assessment. BirdLife International, WageningenGoogle Scholar
  13. Bolton M, Tyler G, Smith K, Bamford R (2007) The impact of predator control on lapwing Vanellus vanellus breeding success on wet grassland nature reserves. J Appl Ecol 44:534–544CrossRefGoogle Scholar
  14. Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298PubMedCrossRefGoogle Scholar
  15. Boyd H (1962) Mortality and fertility of European Charadrii. Ibis 104:368–387CrossRefGoogle Scholar
  16. Bruinzeel LW, van der Kamp J, Zwarts L, Wymenga E, Le Gouar P, Schekkerman H, Van der Jeugd HP, Kentie R, Lourenço P, Hooijmeijer J, Piersma T, Kleijn D (2009) Overleving, trek en overwintering van scholekster, kievit, tureluur en grutto. Altenburg & Wymenga Ecologisch onderzoek, VeenwoudenGoogle Scholar
  17. Burton NHK (2000) Winter site-fidelity and survival of Redshank Tringa totanus at Cardiff, south Wales. Bird Study 47:102–112CrossRefGoogle Scholar
  18. Burton NHK, Rehfisch MM, Clark NA, Dodd SG (2006) Impacts of sudden winter habitat loss on the body condition and survival of Redshank Tringa totanus. J Appl Ecol 43:464–473CrossRefGoogle Scholar
  19. Catchpole EA, Morgan BJT, Freeman SN, Peach WJ (1999) Modelling the survival of British Lapwings Vanellus vanellus using ring-recovery data and weather covariates. Bird Study 46:S5–13CrossRefGoogle Scholar
  20. Chamberlain DE, Fuller RJ, Bunce RGH, Duckworth JC, Shrubb M (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol 37:771–788CrossRefGoogle Scholar
  21. Cormack RM (1964) Estimates of survival from the sighting of marked animals. Biometrika 51:429–438Google Scholar
  22. Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B 268:25–29CrossRefGoogle Scholar
  23. Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196CrossRefGoogle Scholar
  24. Duriez O, Saether SA, Ens BJ, Choquet R, Pradel R, Lambeck RHD, Klaassen M (2009) Estimating survival and movements using both live and dead recoveries: a case study of Oystercatchers confronted with habitat change. J Appl Ecol 46:144–153CrossRefGoogle Scholar
  25. Francis CM, Cooke F (1993) A comparison of survival rate estimates from live recaptures and dead recoveries of lesser snow geese. In: Lebreton JD, North PM (eds) Marked individuals in the study of bird population. Birkhäuser, Basel, pp 169–183Google Scholar
  26. Gill JA, Norris K, Potts PM, Gunnarsson TG, Atkinson PW, Sutherland WJ (2001) The buffer effect and large-scale population regulation in migratory birds. Nature 412:436–438PubMedCrossRefGoogle Scholar
  27. Glutz von Blotzheim UN, Bauer KM, Bezzel E (1984) Handbuch der Vogel Mitteleuropas, 1. Teil Charadriiformes. Akademische, WiesbadenGoogle Scholar
  28. Goedhart PW, Teunissen WA, Schekkerman H (2010) Effect van nestbezoek en onderzoek op weidevogels. SOVON Vogelonderzoek Nederland, Beek-UbbergenGoogle Scholar
  29. Grant MC, Orsman C, Easton J, Lodge C, Smith M, Thompson G, Rodwell S, Moore N (1999) Breeding success and causes of breeding failure of Curlew Numenius arquata in Northern Ireland. J Appl Ecol 36:59–74CrossRefGoogle Scholar
  30. Green RE (1989) Transformation of crude proportions of nests that are successful for comparison with Mayfield estimates of nest success. Ibis 131:305–306CrossRefGoogle Scholar
  31. Gregory RD, Noble DG, Custance J (2004) The state of play of farmland birds: population trends and conservation status of lowland farmland birds in the United Kingdom. Ibis 146(Suppl 2):1–13CrossRefGoogle Scholar
  32. Gregory RD, van Strien A, Vorisek P, Meyling AWG, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Philos Trans R Soc Lond B 360:269–288CrossRefGoogle Scholar
  33. Groen NM, Hemerik L (2002) Reproductive success and survival of Black-tailed Godwits Limosa limosa in a declining local population in The Netherlands. Ardea 90:239–248Google Scholar
  34. Grosskopf G (1959) Zur Biologie des Rotschenkels (Tringa t. totanus) II. J Ornithol 100:210–236CrossRefGoogle Scholar
  35. Grosskopf G (1964) Sterblichkeit und Durchschnittsalter einiger Küstenvogel. J Ornithol 105:427–449CrossRefGoogle Scholar
  36. Harris MP (1970) Territory limiting the breeding population of the Oystercatcher (Haematopus ostralegus)- a removal experiment. J Anim Ecol 39:707–713CrossRefGoogle Scholar
  37. Hötker H (2010) Correction factors for hatching success rates of Meadow Birds not derived by the Mayfield method. Wader Study Group Bull 117(1):59–61Google Scholar
  38. Hötker HJH, Thomsen KM (2007) Aktionsplan für Wiesenvögel und Feuchtwiesen—Endbericht für die Deutsche Bundesstiftung Umwelt. Michael-Otto-Institut im NABU, BergenhusenGoogle Scholar
  39. Hulscher JB (1989) Sterfte en overleving van Scholeksters Haematopus ostralegus bij strenge vorst. Limosa 62:177–181Google Scholar
  40. Insley H, Peach W, Swann B, Etheridge B (1997) Survival rates of Redshank Tringa totanus wintering on the Moray Firth. Bird Study 44:277–289CrossRefGoogle Scholar
  41. Jolly GM (1965) Explicit estimates from capture-recapture data with both death and immigration - Stochastic model. Biometrika 52:225–247Google Scholar
  42. Kersten M, Brenninkmeijer A (1995) Growth, fledging success and post-fledging survival of juvenile Oystercatchers Haematopus ostralegus. Ibis 137:396–404CrossRefGoogle Scholar
  43. King R, Brooks SP, Mazzetta C, Freeman SN, Morgan BJT (2008) Identifying and diagnosing population declines: a Bayesian assessment of Lapwings in the UK. J R Stat Soc Ser C Appl Stat 57:609–632CrossRefGoogle Scholar
  44. Kipp M (1982) Ergebnisse individueller Farbberingung beim Grossen Brachvogel und ihre Bedeutung für den Biotopschutz. Beih Veroff Natur Landsch Bad-Wurtt 25:87–96Google Scholar
  45. Klok TC, Roodbergen M, Hemerik L (2009) Diagnosing decling grassland wader populations using simple matrix models. Anim Biol 59:127–144CrossRefGoogle Scholar
  46. Kraak WK, Rinkel GL, Hoogerheide J (1940) Oecologische bewerking van de Europese ringgegevens van de Kievit (Vanellus vanellus (L.)). Ardea 29:151–175Google Scholar
  47. Kruk M, Noordervliet MAW, ter Keurs WJ (1997) Survival of Black-tailed Godwit chicks Limosa limosa in intensively exploited grassland areas in The Netherlands. Biol Conserv 80:127–133CrossRefGoogle Scholar
  48. Kuijper DPJ, Wymenga E, van der Kamp J, Tanger D (2006) Wintering areas and spring migration of the Black-tailed Godwit (Limosa limosa); bottlenecks and protection along the migration route. A&W-rapport 820 Altenburg en Wymenga ecologisch onderzoek, VeenwoudenGoogle Scholar
  49. Lack D (1954) The natural regulation of animal numbers. Oxford University Press, OxfordGoogle Scholar
  50. Langgemach T, Bellebaum J (2005) Predation and the conservation of ground-breeding birds in Germany. Vogelwelt 126:259–298Google Scholar
  51. Le V.Dit Durell SEA (2007) Differential survival in adult Eurasian Oystercatchers Haematopus ostralegus. J Avian Biol 38:530–535Google Scholar
  52. Le V.Dit Durell SEA, Goss CJD, Clarke RT, McGrorty S (2000) Density-dependent mortality in Oystercatchers Haematopus ostralegus. Ibis 142:132–138CrossRefGoogle Scholar
  53. Lourenço PM, Piersma T (2008) Stopover ecology of Black-tailed Godwits Limosa limosa limosa in Portuguese rice fields: a guide on where to feed in winter. Bird Study 55:194–202CrossRefGoogle Scholar
  54. McCracken DI, Tallowin, R (2004) Swards and structure: the interactions between farming practices and bird food resources in lowland grasslands. Ibis 146 (suppl 2):108–114Google Scholar
  55. Mayfield HF (1975) Suggestions for calculating nest success. Wilson Bull 456–466Google Scholar
  56. Neve G, Van Noordwijk AJ (1997) Factors affecting Oystercatcher (Haematopus ostralegus) survival rate in the Dutch Wadden Sea area. Netherlands Institute of Ecology, HeterenGoogle Scholar
  57. Oosterbeek KH, van de Pol M, de Jong ML, Smit CJ, Ens BJ (2006) Scholekster populatie studies; bijdrage aan de zoektocht naar de oorzaken van de sterke achteruitgang van de Scholekster in het Waddengebied. Alterra-Rapport 1344, SOVON-onderzoeksrapport 2006/2005 Alterra, WageningenGoogle Scholar
  58. Ottvall R (2005) Breeding success and adult survival of Redshank Tringa totanus on coastal meadows in SE Sweden. Ardea 93:225–236Google Scholar
  59. Panek M, Bresinski W (2002) Red Fox Vulpes vulpes density and habitat use in a rural area of western Poland in the end of 1990s, compared with the turn of 1970s. Acta Theriol 47:433–442CrossRefGoogle Scholar
  60. Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Glaser AI, Channing IC, Welham SJ, Gilmour AR, Thompson R, Webster R (2008) Genstat release 11 reference manual. VSN, Hemel HempstedGoogle Scholar
  61. Peach WJ, Thompson PS, Coulson JC (1994) Annual and long-term variation in the survival rates of British Lapwings Vanellus vanellus. J Anim Ecol 63:60–70CrossRefGoogle Scholar
  62. Reif J, Vorisek P, Stastny K, Bejcek V, Petr J (2008) Agricultural intensification and farmland birds: new insights from a central European country. Ibis 150:596–605CrossRefGoogle Scholar
  63. Roodbergen M, Klok C (2008) Timing of breeding and reproductive output in two Black-tailed Godwit Limosa limosa populations in The Netherlands. Ardea 96:219–232CrossRefGoogle Scholar
  64. Roodbergen M, Klok C, Schekkerman H (2008) The ongoing decline of the breeding population of Black-tailed Godwits Limosa l. limosa in The Netherlands is not explained by changes in adult survival. Ardea 96:207–218CrossRefGoogle Scholar
  65. Safriel UN, Harris MP, Brooke MDL, Britton CK (1984) Survival of breeding Oystercatchers Haematopus ostralegus. J Anim Ecol 53:867–878CrossRefGoogle Scholar
  66. Schekkerman H (2008) Precocial problems; Shorebird chick performance in relation to weather, farming and predation. Dissertation, Rijksuniversiteit GroningenGoogle Scholar
  67. Schekkerman H, de groep RAS Ljip (2007) Over de overleving van Friese Kieviten: RAS Ljip 2000–2006. Op het vinkentouw 111:1–6Google Scholar
  68. Schekkerman H, Teunissen WA, Oosterveld E (2009) Mortality of Black-tailed Godwit Limosa limosa and Northern Lapwing Vanellus vanellus chicks in wet grasslands: influence of predation and agriculture. J Ornithol 150:133–145CrossRefGoogle Scholar
  69. Schnakenwinkel G (1970) Studien an der Population des Austernfischers (Haematopus ostralegus) auf Mellum. Die Vogelwarte 25:336–355Google Scholar
  70. Schroeder J (2010) Individual fitness correlates in the Black-tailed Godwit. Dissertation, Rijksuniversiteit GroningenGoogle Scholar
  71. Schroeder J, Kentie R, van der Velde M, Hooijmeijer JCEW, Both C, Haddrath O, Baker AJ, Piersma T (2010) Linking intronic polymorphism on the CHD1-Z gene with fitness correlates in Black-tailed Godwits Limosa l. limosa. Ibis 152:368–377CrossRefGoogle Scholar
  72. Seber GAF (1965) A note on the multiple recapture census. Biometrika 52:249–259Google Scholar
  73. Seber GAF (1970) Estimating time-specific survival and reporting rates for adult birds from band returns. Biometrika 57:313–318Google Scholar
  74. Sharpe F, Clark J, Leech D (2008) Does variation in demographic parameters account for regional variation in Northern Lapwing Vanellus vanellus population declines across Great Britain? Bird Study 55:247–256CrossRefGoogle Scholar
  75. Teunissen WA, Schekkerman H, Willems F (2005) Predatie bij weidevogels. Op zoek naar de mogelijke effecten van predatie op de weidevogelstand. SOVON-onderzoeksrapport 2005/11, Alterra-Document 1292, SOVON Vogelonderzoek Nederland, AlterraBeek-UbbergenGoogle Scholar
  76. Teunissen WA, Schekkerman H, Willems F, Majoor F (2008) Identifying predators of eggs and chicks of Lapwing Vanellus vanellus and Black-tailed Godwit Limosa limosa in the Netherlands and the importance of predation on wader reproductive output. Ibis 150:74–85CrossRefGoogle Scholar
  77. Thompson PS, Hale WG (1993) Adult survival and numbers in a coastal breeding population of Redshank Tringa totanus in northwest England. Ibis 135:61–69CrossRefGoogle Scholar
  78. van de Pol M, Bruinzeel LW, Heg D, Van der Jeugd HP, Verhulst S (2006) A silver spoon for a golden future: long-term effects of natal origin on fitness prospects of Oystercatchers (Haematopus ostralegus). J Anim Ecol 75:616–626PubMedCrossRefGoogle Scholar
  79. Van Noordwijk AJ, Thomson DL (2008) Survival rates of Black-tailed Godwits Limosa limosa breeding in The Netherlands estimated from ring recoveries. Ardea 96:47–57CrossRefGoogle Scholar
  80. Visser ME, Van Noordwijk AJ, Tinbergen JM, Lessells CM (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc Lond B 265:1867–1870CrossRefGoogle Scholar
  81. Wilson AM, Ausden M, Milsom TP (2004) Changes in breeding wader populations on lowland wet grasslands in England and Wales: causes and potential solutions. Ibis 146:32–40CrossRefGoogle Scholar
  82. Wretenberg J, Lindstrom A, Svensson S, Part T (2007) Linking agricultural policies to population trends of Swedish farmland birds in different agricultural regions. J Appl Ecol 44:933–941CrossRefGoogle Scholar
  83. Ylimaunu O, Ylimaunu J, Hemminki O, Liehu H (1987) Breeding ecology and size of the breeding Curlew (Numenius arquata) population in Finland. Lintumies 22:98–103 (In Finnish with English summary)Google Scholar
  84. Zidkova L, Markova V, Adamik P (2007) Lapwing, Vanellus vanellus chick ringing data indicate a region-wide population decline in the Czech Republic. Folia Zool 56:301–306Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Maja Roodbergen
    • 1
    • 2
    • 3
    • 4
  • Bert van der Werf
    • 1
  • Hermann Hötker
    • 5
  1. 1.Alterra, Centre for Ecosystem StudiesWageningenThe Netherlands
  2. 2.Animal Ecology Group, Centre for Ecological and Evolutionary StudiesUniversity of GroningenHarenThe Netherlands
  3. 3.Alterra, Wageningen University and Research centreWageningenThe Netherlands
  4. 4.SOVON Vogelonderzoek NederlandNijmegenThe Netherlands
  5. 5.Michael-Otto Institut im NABUBergenhusenGermany

Personalised recommendations