Journal of Ornithology

, Volume 153, Issue 1, pp 139–147 | Cite as

Intersexual differences in the diving behaviour of Imperial Cormorants

  • Agustina Gómez Laich
  • F. Quintana
  • E. L. C. Shepard
  • R. P. Wilson
Original Article


Intersexual differences in the foraging behaviour have been examined in several seabird species, especially those exhibiting sexual size dimorphism. We studied intersex behavioural differences in the Imperial Cormorant (Phalacrocorax atriceps), a size dimorphic seabird. Twenty adults (11 females and 9 males), breeding at Punta León (43°04′S; 64°2′W), Chubut, Argentina, were equipped with loggers to measure tri-axial acceleration and depth, to calculate the foraging trip time/activity budgets and diving behaviour. Both sexes had similar foraging trip durations, spending a similar proportion of the foraging time flying and floating on the sea surface. However, females spent more time underwater, executing more and shallower dives. Females also recovered more quickly than males from dives performed to depths of less than 30 m and spent more time foraging along the bottom at any depth than males. We conclude that if allometric effects affect the foraging behaviour of Imperial Cormorants, they only do so during diving because no differences were observed in the total amount of time sexes spent flying or foraging.


Imperial Cormorant Phalacrocorax atriceps Time budget Diving behaviour Sexual dimorphism 


Geschlechtsunterschiede bei der Nahrungsaufnahme wurden bereits für mehrere Seevögel beschrieben, besonders für solche mit geschlechtsabhängiger Körpergröße. Wir untersuchten geschlechtsspezifische Verhaltensunterschiede bei der Blauaugenscharbe, einem Seevogel mit geschlechtsbedingt unterschiedlicher Körpergröße. Achtundzwanzig adulte Tiere (11 Weibchen, 9 Männchen), die bei Punta León (43°04′S; 64°2′W), Chubut, Argentinien, brüteten, wurden mit Datenloggern zur Aufzeichnung ihrer drei-achsigen Beschleunigung und Tauchtiefe versehen, um ihre Zeit- und Aktivitäts-Budgets und ihr Tauchverhalten zu messen. Beide Geschlechter verbrachten etwa gleich viel Zeit bei ihren Ausflügen zur Nahrungssuche, mit in etwa auch gleich großen Zeit-Anteilen für Fliegen und Treiben auf dem Wasser. Aber die Weibchen verbrachten mehr Zeit unter Wasser bei häufigeren Tauchgängen in flacherem Wasser. Sie erholten sich auch rascher als die Männchen von Tauchgängen in Tiefen bis zu 30 Meter und verbrachten in jeder Tiefe mehr Zeit als die Männchen bei der Nahrungsaufnahme am Grund. Wir schließen hieraus, dass, wenn allometrische Effekte das Nahrungsaufnahme-Verhalten von Blauaugenscharben überhaupt beeinflussen, diese Einflüsse nur beim Tauchen auftreten, da in der Zeit, die fliegend oder für die Nahrungsaufnahme verbracht wurde, kein Geschlechtsunterschied festgestellt werden konnten.



Research was funded by grants from the Wildlife Conservation Society, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and Agencia de Promoción Científica y Tecnológica to F. Quintana and by a Rolex Award for Enterprise awarded to R. P. Wilson. We would like to thank the Organismo Provincial de Turismo for the permits to work in Punta León and the Centro Nacional Patagónico (CENPAT-CONICET) for institutional support. A. Gómez Laich is supported by a PhD fellowship from CONICET.


  1. Aschoff J, Pohl H (1970) Rhythmic variation in energy metabolism. Fed Proc 29:1541–1552PubMedGoogle Scholar
  2. Baduini CL, Hyrenbach KD (2003) Biogeography of procellariiform foraging strategies: does ocean productivity influence provisioning? Mar Ornithol 31:101–112Google Scholar
  3. Birt VL, Birt TP, Goulet D, Cairns DK, Montevecchi WA (1987) Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar Ecol Prog Ser 40:205–208CrossRefGoogle Scholar
  4. Boyd I (1997) The behavioural and physiological ecology of diving. Trends Ecol Evol 12:213–217PubMedCrossRefGoogle Scholar
  5. Butler P (2004) Metabolic regulation in diving birds and mammals. Respir Physiol Neurobiol 141:297–315PubMedCrossRefGoogle Scholar
  6. Butler PJ, Jones DR (1997) Physiology of diving of birds and mammals. Physiol Rev 77:837–899PubMedGoogle Scholar
  7. Casaux R, Favero M, Silva P, Baroni A (2001) Sex differences in diving depths and diet of Antarctic shags at the South Shetland Islands. J Field Ornithol 72:22–29Google Scholar
  8. Chaurand T, Weimerskirch H (1994) The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a pelagic seabird. J Anim Ecol 63:275–282CrossRefGoogle Scholar
  9. Cook TR, Cherel Y, Bost CA, Tremblay Y (2007) Chick-rearing Crozet shags (Phalacrocorax melanogenis) display sex-specific foraging behaviour. Antarct Sci 19:55–63Google Scholar
  10. Cook TR, Lescroel A, Tremblay Y, Bost CA (2008a) To breathe or not to breathe? Optimal breathing, aerobic dive limit and oxygen stores in deep-diving blue-eyed shags. Anim Behav 76:565–576CrossRefGoogle Scholar
  11. Cook T, Bailleul F, Lescroël A, Tremblay Y, Bost CA (2008b) Crossing the frontier: vertical transit rates of deep diving cormorants reveal depth zone of neutral buoyance. Mar Biol 154:383–391CrossRefGoogle Scholar
  12. Cooper J (1986) Diving patterns of cormorants Phalacrocoracidae. Ibis 128:562–570CrossRefGoogle Scholar
  13. Costa DP, Gales NJ, Goebel ME (2001) Aerobic dive limit: how often does it occur in nature? Comp Biochem Phys A 129:771–783CrossRefGoogle Scholar
  14. Dial KP, Greene E, Irschick DJ (2008) Allometry of behaviour. Trends Ecol Evol 23:394–401PubMedCrossRefGoogle Scholar
  15. Fairbairn J, Shine S (1993) Patterns of sexual size dimorphism in seabirds of the Southern Hemisphere. Oikos 68:139–145CrossRefGoogle Scholar
  16. Favero M, Casaux R, Silva P, Barrera-Oro E, Coria N (1998) The diet of the Antarctic shag during summer at Nelson Island, Antarctica. The Condor 100:112–118CrossRefGoogle Scholar
  17. Frere E, Quintana F, Gandini P (2005) Cormoranes de la costa patagónica: estado poblacional, ecología y conservación. Hornero 20:35–52Google Scholar
  18. Gaston AJ, Ydenberg RC, Smith GEJ (2007) Ashmole’s halo and population regulation in seabirds. Mar Ornithol 35:119–126Google Scholar
  19. Gómez Laich A, Wilson RP, Quintana F, Shepard ELC (2008) Identification of Imperial Cormorant Phalacrocorax atriceps behaviour using accelerometers. Endang Species Res 10:29–37CrossRefGoogle Scholar
  20. González-Solis J, Croxall JP, Wood AG (2000) Sexual dimorphism and sexual segregation in foraging strategies of northern giant petrels, Macronectes halli, during incubation. Oikos 90:390–398CrossRefGoogle Scholar
  21. Green JA, Halsey LG, Wilson RP, Frappell PB (2009) Estimating energy expenditure of animals using the accelerometry technique: activity, inactivity and comparison with the heart-rate technique. J Exp Biol 212:471–482PubMedCrossRefGoogle Scholar
  22. Grémillet D, Chauvin C, Wilson RP, Le Maho Y, Wanless S (2005) Unusual feather structure allows partial plumage wettability in diving great cormorants Phalacrocorax carbo. J Avian Biol 36:57–63CrossRefGoogle Scholar
  23. Halsey LG, Shepard ELC, Hulston CJ, Venables MC, White CR, Jeukendrup AE, Wilson RP (2008a) Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: tests with an easy model species, Homo sapiens. Zoology 111:231–241PubMedCrossRefGoogle Scholar
  24. Halsey LG, Shepard ELC, Quintana F, Gómez Laich A, Green JA, Wilson RP (2008b) The relationship between oxygen consumption and body acceleration in a range of species. Comp Biochem Phys A:197–202Google Scholar
  25. Kato A, Croxal JP, Watanuki Y, Naito Y (1991) Diving patterns and performance in male and female blue-eyed cormorants Phalacrocorax atriceps at South Georgia. Mar Ornithol 19:117–129Google Scholar
  26. Kato A, Watanuki Y, Nishiumi I, Kuroki M, Naito Y (2000) Variation in foraging and parental behaviour of King Cormorant. Auk 117:718–730CrossRefGoogle Scholar
  27. Kooyman GL (1989) Diverse divers. Springer, BerlinCrossRefGoogle Scholar
  28. Lewis S, Benvenuti S, Dall’Antonia L, Griffiths R, Money L, Sherratt TN, Wanless S, Hamer KC (2002) Sex-specific foraging behaviour in a monomorphic seabird. Proc R Soc Lond 269:1687–1693CrossRefGoogle Scholar
  29. Liordos V, Goutner V (2009) Sexual differences in the diet of great cormorants Phalacrocorax carbo sinensis wintering in Greece. Eur J Wildlife Res 55:301–308CrossRefGoogle Scholar
  30. Lovvorn JR (2001) Upstroke thrust, drag effects, and stroke-glide cycles in wing-propelled swimming by birds. Amer Zool 41:154–165CrossRefGoogle Scholar
  31. Lovvorn JR, Jones DR (1991) Effects of body size, body fat and change in pressure with depth on buoyancy and costs of diving in ducks (Aythya spp.). Can J Zool 69:2879–2887Google Scholar
  32. Lovvorn JR, Croll DA, Liggins GA (1999) Mechanical versus physiological determinants of swimming speeds in diving Brunnich’s guillemots. J Exp Biol 202:1741–1752PubMedGoogle Scholar
  33. Lovvorn JR, Watanuki Y, Kato A, Naito Y, Liggins GA (2004) Stroke patterns and regulation of swim speed and energy cost in free-ranging Brunnich’s guillemots. J Exp Biol 207:4679–4695PubMedCrossRefGoogle Scholar
  34. Malacalza VE, Hall MA (1988) Sexing adult King Cormorants (Phalacrocorax albiventer) by discriminant analysis. Colon Waterbird 11:32–37CrossRefGoogle Scholar
  35. Martin TE, Auer SK, Bassar RD, Niklison AM, Lloyd P (2007) Geographic variation in avian incubation periods and parental influences on embryonic temperature. Evolution 61:2558–2569PubMedCrossRefGoogle Scholar
  36. Masello JF, Mundry R, Poisbleau M, Demangin L, Voig CC, Wikelski M, Quillfeldt P (2010) Diving seabirds share foraging space and time within and among species. Ecosphere 1: art 19Google Scholar
  37. Mori Y (1998) Optimal choice of foraging depth in divers. J Zool Lond 245:279–283CrossRefGoogle Scholar
  38. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 154–177Google Scholar
  39. Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge, UKGoogle Scholar
  40. Quillfeldt P, Schroff S, van Noordwijk HJ, Michalik A, Ludynia K, Masello JF (2011) Flexible foraging behaviour of a sexually dimorphic seabird: large males do not always dive deep. Mar Ecol Prog Ser 428:271–287Google Scholar
  41. Quintana F, Wilson R, Yorio P (2007) Dive depth and plumage air in wettable birds: the extraordinary case of the imperial cormorant. Mar Ecol Prog Ser 334:299–310CrossRefGoogle Scholar
  42. Quintana F, Wilson R, Dell’Arciprete P, Shepard E, Gómez Laich A (2011) Women from Venus, men from Mars: inter-sex foraging differences in the Imperial cormorant, Phalacrocorax atriceps, a colonial seabird. Oikos 120:350–358CrossRefGoogle Scholar
  43. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  44. Ribak G, Weihs D, Arad Z (2005) Submerged swimming of the great cormorant Phalacrocorax carbo sinensis is a variant of the burst-and-glide gait. J Exp Biol 208:3835–3849PubMedCrossRefGoogle Scholar
  45. Ribak G, Strod T, Weihs D, Arad Z (2007) Optimal descend angles for shallow-diving cormorants. Can J Zool 85:561–573CrossRefGoogle Scholar
  46. Ropert-Coudert Y, Kato A, Wilson R, Beaulieu M (2011) Short and long trips and everything in between: regulation of foraging trip duration in seabirds. Oecologia (in press)Google Scholar
  47. Ross RK (1976) Notes on the behavior of captive Great Cormorants. Wilson Bull 88:143–145Google Scholar
  48. Schmidt-Nielsen K (1990) Animal physiology: adaptation and environment. Cambridge University Press, CambridgeGoogle Scholar
  49. Shaffer SA, Weimerskirch H, Costa DP (2001) Functional significance of sexual dimorphism in Wandering Albatross, Diomedea exulans. Funct Ecol 15:203–210CrossRefGoogle Scholar
  50. Shepard ELC, Wilson RP, Quintana F, Gómez Laich A, Liebsch N, Albareda D, Halsey LG, Gleiss A, Morgan DT, Myers AE, Newman C, Macdonald DW (2008) Identification of animal movement patterns using tri-axial accelerometry. Endang Species Res 10:47–60CrossRefGoogle Scholar
  51. Shepard ELC, Wilson RP, Quintana F, Gómez Laich A, Forman DW (2009) Pushed for time or saving fuel: fine-scale energy budgets shed light on currencies in a diving bird. Proc R Soc B 276:3149–3155PubMedCrossRefGoogle Scholar
  52. Svagelj W, Quintana F (2007) Sexual size dimorphism and sex determination by morphometric measurements in breeding shags (Phalacrocorax atriceps). Waterbirds 30:97–102CrossRefGoogle Scholar
  53. Thaxler CB, Daunt F, Hamer KC, Watanuki Y, Harris MP, Grémillet D, Peters G, Wanless S (2009) Sex-specific food provisioning in a monomorphic seabird, the common guillemot Uria aalgae: nest defense, foraging efficiency or parental effort? J Avian Biol 40:75–84CrossRefGoogle Scholar
  54. Van Tets GF (1976) Australasia and the origin of shags and cormorants, Phalacrocoracidae. In: Calaby JH (ed) Australian Academy of Science, Canberra, pp 121–124Google Scholar
  55. Wanless S, Harris MP (1986) Time spent at the colony by male and female guillemots Uria aalge and razorbills Alca torda. Bird Study 33:168–176CrossRefGoogle Scholar
  56. Wanless S, Harris G (1991) Diving patterns of full-grown and juvenile rock shags. Condor 93:44–48CrossRefGoogle Scholar
  57. Watanuki Y, Niizuma Y, Gabrielsen GW, Sato K, Naito Y (2003) Stroke and glide of wing-propelled divers: deep diving seabirds adjust surge frequency to buoyancy change with depth. Proc R Soc Lond 270:483–488CrossRefGoogle Scholar
  58. Watanuki Y, Takahashi A, Daunt F, Wanless S, Harris MP, Sato K, Naito Y (2005) Regulation of stroke and glide in a foot-propelled avian diver. J Exp Biol 208:2207–2216PubMedCrossRefGoogle Scholar
  59. Weimerskirch H, Cherel Y, Cuenot-Chaillet F, Ridoux V (1997) Alternative foraging strategies and resource allocation by male and female wandering albatrosses. Ecology 78:2051–2063CrossRefGoogle Scholar
  60. Wilson R, Quintana F (2004) Surface pauses in relation to dive duration in imperial cormorants, how much time for a breather? J Exp Biol 207:1789–1796PubMedCrossRefGoogle Scholar
  61. Wilson RP, Hustler K, Ryan PG, Noeldeke C, Burger AE (1992) Diving birds in cold water: do Archemedes and Boyle determine energy costs. Am Nat 140:179–200CrossRefGoogle Scholar
  62. Wilson RP, Putz K, Charrassin JB, Lage J (1997) Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildlife Soc B 25:101–106Google Scholar
  63. Wilson RP, Ropert-Coudert Y, Kato A (2002) Rush and grab strategies in foraging marine endotherms: the case for haste in penguins. Anim behav 63:85–95Google Scholar
  64. Wilson RP, White CR, Quintana F, Halsey LG, Liebsh N, Martin GR, Butler PJ (2006) Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol 75:1081–1090PubMedCrossRefGoogle Scholar
  65. Wilson RP, Shepard ELC, Liebsch N (2008) Prying into the intimate details of animal lives: use of a daily diary on animals. Endang Species Res 4:123–137CrossRefGoogle Scholar
  66. Wilson RP, McMahon CR, Quintana F, Frere E, Scolaro A, Hays GC, Bradshaw CJA (2011) N-dimensional animal energetic niches clarify behavioural options in a variable marine environment. J Exp Biol 214:646–656PubMedCrossRefGoogle Scholar
  67. Woo K, Kober K, Gaston AJ (1999) Difference in timing of incubation shifts between male and female thick-billed murres are associated with variation in maximum diving depth. Pacific Seabirds 26:55Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Agustina Gómez Laich
    • 1
  • F. Quintana
    • 1
    • 2
  • E. L. C. Shepard
    • 3
  • R. P. Wilson
    • 3
  1. 1.Centro Nacional Patagónico (CENPAT)CONICETPuerto MadrynArgentina
  2. 2.Wildlife Conservation SocietyCiudad de Buenos AiresArgentina
  3. 3.Biological Sciences, Institute of Environmental SustainabilityUniversity of WalesSwanseaUK

Personalised recommendations