Advertisement

Journal of Ornithology

, 152:25 | Cite as

Bird migration on Helgoland: the yield from 100 years of research

  • Ommo HüppopEmail author
  • Kathrin Hüppop
Original Article

Abstract

The island of Helgoland (or Heligoland; in the North Sea) was the very first place on Earth to be the focus of systematic studies on bird migration (since the mid-nineteenth century). The “Vogelwarte Helgoland” was founded in 1910, and since 1909 more than 800,000 birds have been ringed. Most of these are nocturnally migrating songbirds that cross the German Bight in a broad front on their way to or from their Scandinavian breeding grounds. In good weather conditions (tail winds, clear sky), the majority of the migrants does not land on Helgoland, but deteriorating weather strongly increases their attraction to this island. Wind can cause rare birds such as raptors and continental landbirds to be blown offshore or pelagic seabirds to be blown into the German Bight, where they can drift to Helgoland. Migrants stay for hours to weeks, depending on species, age, sex, body condition, season, weather, food availability, intra- and interspecific competition, and predation pressure. The direction of departure also appears to be influenced by body and weather conditions. The reported circumstances for the almost 7,000 recoveries have changed substantially over the last 100 years, and show definite regional differences. Indices from constant-effort trapping reveal decreased numbers of long-distance migrants, while numbers of short/medium-distance migrants have not changed much. In all “true migrants,” the mean spring passage time has become earlier since 1960 (by up to 18 days). Whereas changes in autumn are less uniform, the time between both periods has increased in most species. This earliness in spring is best explained by local temperatures in short/medium-distance migrants, and by the winter NAO index in long-distance migrants.

Keywords

Bird migration Island Ringing Weather Climate change History 

Notes

Acknowledgments

We are grateful to the thousands of people who have worked as staff or volunteers for the Vogelwarte Helgoland and the Institute of Avian Research, respectively, on the island of Helgoland. In particular, we take our hats off to those who ensured that ornithological studies on this small rock survived, even during the worst periods of the last century. We thank Franz Bairlein and Heiko Schmaljohann for useful comments on an earlier version of this paper.

References

  1. Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen E (2004) Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob Change Biol 10:1610–1617CrossRefGoogle Scholar
  2. Alerstam T (1978) Analysis and a theory of visible bird migration. Oikos 30:273–349CrossRefGoogle Scholar
  3. Antoniazza M, Catzeflis F, Roulier C, Winkler R (1974) Verluste an Helgoländer Durchzüglern auf dem Wegzug 1973. Corax 5, Beiheft I:58–62Google Scholar
  4. Archer M, Grantham M, Howlett P, Stansfield S (2010) Bird observatories of Britain and Ireland. Poyser, LondonGoogle Scholar
  5. Bairlein F, Becker PH (2010) 100 Jahre Institut für Vogelforschung “Vogelwarte Helgoland”. Aula, WiebelsheimGoogle Scholar
  6. Bairlein F, Hüppop O (1997) Heinrich Gätke - sein ornithologisches Werk heute. Vogelwarte 39:3–13Google Scholar
  7. Bairlein F, Hüppop O (2004) Migratory fuelling and clobal climate change. In: Møller AP, Fiedler W, Berthold P (eds) Birds and climate change (Adv Ecol Res 35). Elsevier, Amsterdam, pp 33–47Google Scholar
  8. Bairlein F, Schaub M (2009) Ringing and the study of mechanisms of migration. Ringing Migr 24:162–168CrossRefGoogle Scholar
  9. Bairlein F, Winkel W (2001) Birds and climate. In: Lozan JL, Graßl H, Hupfer P (eds) Climate of the 21st century: changes and risks. Scientific facts. GEO, Hamburg, pp 278–282Google Scholar
  10. Bauer HG, Berthold P (1997) Die Brutvögel Mitteleuropas. Bestand und Gefährdung, Aula, WiesbadenGoogle Scholar
  11. Berthold P (1996) Control of bird migration. Chapman and Hall, LondonGoogle Scholar
  12. Berthold P (2001) Bird migration. A general survey, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  13. Berthold P, Schlenker R (1975) Das „Mettnau-Reit-Illmitz-Programm”—ein langfristiges Vogelfangprogramm der Vogelwarte Radolfzell mit vielfältiger Fragestellung. Vogelwarte 28:97–123Google Scholar
  14. Berthold P, Fiedler W, Schlenker R, Querner U (1998) 25-Year study of the population development of central European songbirds: a general decline most evident in long-distance migrants. Naturwissenschaften 85:350–353Google Scholar
  15. Bønløkke J, Madsen JJ, Thorup K, Pedersen KT, Bjerrum M, Rahbek C (2006) Dansk Trækfugleatlas. Rhodos, HumlebækGoogle Scholar
  16. Both C, van Turnhout CAM, Bijlsma RG, Siepel H, van Strien AJ, Foppen RPB (2010) Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc R Soc Lond B 277:1259–1266CrossRefGoogle Scholar
  17. Bub H (1985) Atlas der Wanderungen des Berghänflings (Carduelis f. flavirostris) 1952–1970 in Mitteleuropa. Beitr Vogelkd. Jena 31:189–213Google Scholar
  18. Burton JF (1995) Birds and climate change. Black, LondonGoogle Scholar
  19. Busche G, Dierschke V (2007) Jahreszeitliches Auftreten und Bestandsentwicklung der Turteltaube Streptopelia turtur an der Deutschen Bucht. Vogelwelt 128:149–157Google Scholar
  20. Clarke WE (1912) Studies in bird migration. Gurney and Jackson, EdinburghGoogle Scholar
  21. Cotton PA (2003) Avian migration phenology and global climate change. Proc Nat Acad Sci USA 100:12219–12222Google Scholar
  22. Day KR, Ayres MP, Harrington R (2010) Interannual dynamics of aerial and arboreal green spruce aphid populations. Popul Ecol 52:317–327CrossRefGoogle Scholar
  23. Delingat J, Hobson KA, Dierschke V, Schmaljohann H, Bairlein F (2010) Morphometrics and stable isotopes differentiate populations of Northern Wheatears (Oenanthe oenanthe). J Ornithol. doi: 10.1007/s10336-010-0599-4
  24. Dierschke V (1989) Automatisch-akustische Erfassung des nächtlichen Vogelzuges bei Helgoland im Sommer 1987. Vogelwarte 35:115–131Google Scholar
  25. Dierschke V (1998) Site fidelity and survival of Purple Sandpipers (Calidris maritima) at Helgoland (SE North Sea). Ringing Migr 19:41–48Google Scholar
  26. Dierschke V (2001) Das Vorkommen von Greifvögeln auf Helgoland: regulärer Zug oder Winddrift? Vogelwelt 122:247–256Google Scholar
  27. Dierschke V (2006) Factors determining stopover decisions in migrating passerines at an offshore island. Acta Zool Sinica 52(Suppl):594–598Google Scholar
  28. Dierschke V, Bindrich F (2001) Body condition of migrant passerines crossing a small ecological barrier. Vogelwarte 41:119–132Google Scholar
  29. Dierschke V, Delingat J (2001) Stopover behaviour and departure decision of Northern Wheatears, Oenanthe oenanthe, facing different onward non-stop flight distances. Behav Ecol Sociobiol 50:535–545CrossRefGoogle Scholar
  30. Dierschke J, Dierschke V, Hüppop K, Hüppop O, Jachmann KF (2011) Die Vogelwelt der Insel Helgoland. OAG Helgoland, HelgolandGoogle Scholar
  31. Drost R (1925) Eine gewaltige Zugnacht auf Helgoland als Folge ungünstiger Wetterverhältnisse im Frühjahr 1924. Ornithol Monatsber 33:11–13Google Scholar
  32. Drost R (1928) Unermeßliche Vogelscharen über Helgoland. Ornithol Monatsber 36:3–6Google Scholar
  33. Drost R (1929) Die Europäischen Beringungszentralen. Ornithol Monatsber 37:161–172Google Scholar
  34. Drost R (1933) Eine selbsttätige Kleinvogelreuse mit Wasser als Köder. Vogelzug 4:37–38Google Scholar
  35. Drost R (1940) Im Oktober auf Helgoland rastende Zugvögel infolge ungünstigen Wetters verhungert. Vogelzug 11:40–41Google Scholar
  36. Drost R (1960) Über den nächtlichen Vogelzug auf Helgoland. In: Proc 12th Int Ornithological Congr, Helsinki, Finland, 5–12 June 1958, pp 178–192Google Scholar
  37. Dunn EH, Hussell DJT, Francis CM (2004) A comparison of three count methods for monitoring songbird abundance during spring migration: capture, census, and estimated totals. Stud Avian Biol 29:116–122Google Scholar
  38. Fiedler W (2001) Vogelwarte Rossitten—ornithology on the Courish Spit between 1901 and 1944. Avian Ecol Behav 7:3–9Google Scholar
  39. Filippi-Codaccioni O, Moussus J-P, Urcun J-P, Jiguet F (2010) Advanced departure dates in long-distance migratory raptors. J Ornithol 151:687–694CrossRefGoogle Scholar
  40. Förschler M, del Val E, Bairlein F (2010) Extraordinary high natal philopatry in a migratory passerine. J Ornithol 151:745–748CrossRefGoogle Scholar
  41. Furness RW, Greenwood JJD (1993) Birds as monitors of environmental change. Chapman and Hall, LondonGoogle Scholar
  42. Gätke H (1891) Die Vogelwarte Helgoland. Meyer, BraunschweigGoogle Scholar
  43. Gätke H (1895) Heligoland as an ornithological observatory. Douglas, EdinburghGoogle Scholar
  44. Gätke H (1900) Die Vogelwarte Helgoland, 2nd edn. Meyer, BraunschweigGoogle Scholar
  45. Gregory RD, Willis SG, Jiguet F, Voříšek P, Klvaňová A et al. (2009) An indicator of the impact of climatic change on European bird populations. PLoS ONE. doi: 10.1371/journal.pone.0004678
  46. Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48PubMedGoogle Scholar
  47. Harrington R, Woiwod I, Sparks T (1999) Climate change and trophic interactions. Trends Ecol Evol 14:146–150PubMedCrossRefGoogle Scholar
  48. Heldbjerg H, Fox AD (2008) Long-term population declines in Danish trans-Saharan migrant birds. Bird Study 55:267–279CrossRefGoogle Scholar
  49. Hilgerloh G (1977) Der Einfluß einzelner Wetterfaktoren auf den Herbstzug der Singdrossel (Turdus philomelos) über der Deutschen Bucht. J Ornithol 118:416–435CrossRefGoogle Scholar
  50. Hullé M, Cœur d’Acier A, Bankhead-Dronnet S, Harrington R (2010) Aphids in the face of global changes. Comptes Rendus Biologies 333:497–503PubMedCrossRefGoogle Scholar
  51. Hüppop O (1996) Causes and trends of the mortality of Guillemots (Uria aalge) ringed on the island of Helgoland, German Bight. Vogelwarte 38:217–224Google Scholar
  52. Hüppop K, Hüppop O (2002) Atlas zur Vogelberingung auf Helgoland Teil 1: Zeitliche und regionale Veränderungen der Wiederfundraten und Todesursachen auf Helgoland beringter Vögel (1909 bis 1998). Vogelwarte 41:161–181Google Scholar
  53. Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc Lond B 270:233–240CrossRefGoogle Scholar
  54. Hüppop K, Hüppop O (2004) Atlas zur Vogelberingung auf Helgoland. Teil 2: Phänologie im Fanggarten von 1961 bis 2000. Vogelwarte 42:285–343Google Scholar
  55. Hüppop K, Hüppop O (2007) Atlas zur Vogelberingung auf Helgoland Teil 4: Fangzahlen im Fanggarten auf Helgoland von 1960 bis 2004. Vogelwarte 45:145–207Google Scholar
  56. Hüppop O, Hüppop K (2008) Climate changes and timing of bird migration. In: Chae HY, Choi CY, Nam HY (eds) Monitoring climate changes: migratory birds and wetlands in stopover islands. In: Proceedings of the Second International Symposium on Migratory Birds, Changwon, Korea, 27 Oct 2008, pp 17–26Google Scholar
  57. Hüppop K, Hüppop O (2009) Atlas zur Vogelberingung auf Helgoland Teil 5: Ringfunde von 1909 bis 2008. Vogelwarte 47:189–249Google Scholar
  58. Hüppop O, Winkel W (2006) Climate change and timing of spring migration in the long-distance migrant Ficedula hypoleuca in central Europe: the role of spatially different temperature changes along migration routes. J Ornithol 147:344–353CrossRefGoogle Scholar
  59. Hüppop O, Dierschke J, Wendeln H (2004) Zugvögel und Offshore-Windkraftanlagen: Konflikte und Lösungen. Ber Vogelschutz 41:127–218Google Scholar
  60. Hüppop O, Dierschke J, Exo K-M, Fredrich E, Hill R (2006) Bird migration and offshore wind turbines. In: Köller J, Köppel J, Peters W (eds) Offshore wind energy. Research on environmental impacts. Springer, Berlin, New York, pp 91–116CrossRefGoogle Scholar
  61. Hüppop K, Dierschke J, Dierschke V, Hill R, Jachmann KF, Hüppop O (2010) Phänologie des „sichtbaren” Vogelzugs über der Deutschen Bucht. Vogelwarte 48:181–267Google Scholar
  62. Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic Oscillation. Science 291:603–605Google Scholar
  63. IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  64. Jellmann J, Vauk G (1978) Untersuchungen zum Verlauf des Frühjahrszuges über der Deutschen Bucht nach Radarstudien und Fang- und Beobachtungsergebnissen auf Helgoland. J Ornithol 119:265–286CrossRefGoogle Scholar
  65. Jenni L (1984) Zugmuster von Vögeln auf dem Col de Bretolet unter besonderer Berücksichtigung nachbrutzeitlicher Bewegungen. Orn Beob 81:183–213Google Scholar
  66. Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc R Soc Lond B 270:1467–1471CrossRefGoogle Scholar
  67. Jonzén N, Ergon T, Lindén A, Stenseth NC (2007) Bird migration and climate: the general picture and beyond. Clim Res 35:177–180CrossRefGoogle Scholar
  68. Krüger T, Dierschke J (2006) Das Vorkommen des Wellenläufers Oceanodroma leucorhoa in Deutschland. Vogelwelt 127:145–162Google Scholar
  69. Lehikoinen E, Sparks TH (2010) Changes in migration. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 89–112Google Scholar
  70. Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. In: Møller AP, Fiedler W, Berthold P (eds) Birds and climate change (Adv Ecol Res 35). Elsevier, London, pp 1–31Google Scholar
  71. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055PubMedCrossRefGoogle Scholar
  72. Mason CF (1995) Long-term trends in the arrival dates of spring migrants. Bird Study 42:182–189CrossRefGoogle Scholar
  73. McCulloch MN, Tucker GM, Baillie SR (1992) The hunting of migratory birds in Europe: a ringing recovery analysis. Ibis 134(Suppl 1):55–65Google Scholar
  74. Mead C (1993) Auk mortality causes and trends. In: Andrews J, Carter SP (eds) Britain’s birds in 1990–91: the conservation and monitoring review. Brit Trust Ornithol and Joint Nature Cons Comm, Thetford, pp 66–67Google Scholar
  75. Miller-Rushing AJ, Lloyd-Evans TL, Primack RB, Satzinger P (2008) Bird migration times, climate change, and changing population sizes. Glob Change Biol 14:1959–1972CrossRefGoogle Scholar
  76. Milwright RDP (2006) Post-breeding dispersal, breeding site fidelity and migration/wintering areas of migratory populations of Song Thrush Turdus philomelos in the Western Palearctic. Ringing Migr 23:21–32CrossRefGoogle Scholar
  77. Møller AP, Fiedler W, Berthold P (2004) Birds and climate change (Adv Ecol Res 35). Elsevier, AmsterdamGoogle Scholar
  78. Møller AP, Fiedler W, Berthold P (2010) Effects of climate change on birds. Oxford University Press, OxfordGoogle Scholar
  79. Moore FR, Kerlinger P, Simons TR (1990) Stopover on a Gulf Coast barrier island by spring trans-Gulf migrants. Wilson Bull 102:487–500Google Scholar
  80. Moritz D (1982) Langfristige Bestandsschwankungen ausgewählter Passeres nach Fangergebnissen auf Helgoland. Seevögel 3(Suppl):13–24Google Scholar
  81. Moritz D (1983) Zum Vorkommen des Neuntöters (Lanius collurio) auf Helgoland nach Fangergebnissen von 1953 bis 1979. Vogelwarte 32:142–148Google Scholar
  82. Naumann JF (1820–1844) Naturgeschichte der Vögel Deutschlands. Fleischer, LeipzigGoogle Scholar
  83. Naumann JF (1846) Über den Vogelzug, mit besonderer Hinsicht auf Helgoland. Rhea 1:18–27Google Scholar
  84. Newton I (2008) The migration ecology of birds. Academic, LondonGoogle Scholar
  85. Newton I (2011) Migration within the annual cycle: species, sex and age differences. J Ornithol. doi: 10.1007/s10336-011-0689-y
  86. Ottich I, Dierschke V (2003) Exploitation of resources modulates stopover behaviour of passerine migrants. J Ornithol 144:307–316Google Scholar
  87. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Change Biol 13:1860–1872CrossRefGoogle Scholar
  88. Payevsky V, Vysotsky VA (2003) Migratory Song Thrushes Turdus philomelos hunted in Europe: survival rates and other demographic parameters. Avian Sci 3:13–20Google Scholar
  89. Prüter J (1984) Methoden und vorläufige Ergebnisse der Großmöwenberingung auf Helgoland. Seevögel 5, Sonderbd 61–65Google Scholar
  90. Pyle P, Nur N, Henderson RP, DeSante DF (1993) The effects of weather and lunar cycle on nocturnal migration of landbirds at Southeast Farallon Island, California. Condor 95:343–361CrossRefGoogle Scholar
  91. Raiss R (1979) Resting behaviour as an indicator for different migration strategies in three species of European Thrushes (Turdus sp). Abh Geb Vogelkd 6:203–213Google Scholar
  92. Ringleben H (1958) Zur Entstehungsgeschichte der Bezeichnung „Vogelwarte”. Vogelwarte 19:206–207Google Scholar
  93. Robinson A, Crick HQP, Learmonth JA, Maclean IMD, Thomas CD, Bairlein F, Forchhammer MC, Francis CM, Gill JA, Godley BJ, Harwood J, Hays GC, Huntley B, Hutson AM, Pierce GJ, Rehfisch MM, Sims DW, Vieira dos Santos MC, Sparks TH, Stroud D, Visser ME (2009) Travelling through a warming world: climate change and migratory species. Endang Species Res 7:87–99CrossRefGoogle Scholar
  94. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60PubMedCrossRefGoogle Scholar
  95. Rubolini D, Møller AP, Rainio K, Lehikoinen E (2007) Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim Res 35:135–146CrossRefGoogle Scholar
  96. Sacher T, Engler J, Gorschewski A, Gottschling M, Hesler N, Bairlein F, Coppack T (2006) Die Helgoländer Amselpopulation: ein Modell für Populationsgenetik und Zugbiologie. Ornithol Jahresber Helgoland 16:76–84Google Scholar
  97. Saino N, Rubolini D, von Hardenberg J, Ambrosini R, Provenzale A, Romano M, Spina F (2010) Spring migration decisions in relation to weather are predicted by wing morphology among trans-Mediterranean migratory birds. Funct Ecol 24:658–669CrossRefGoogle Scholar
  98. Saino N, Ambrosini R, Rubolini D, von Hardenberg J, Provenzale A, Hüppop K, Hüppop O, Lehikoinen A, Lehikoinen E, Rainio K, Romano M, Sokolov L (2011) Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc R Soc B. doi: 10.1098/rspb.2010.1778
  99. Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Cons 131:93–105CrossRefGoogle Scholar
  100. Schmaljohann H, Dierschke V (2005) Optimal bird migration and predation risk: a field experiment with Northern Wheatears Oenanthe oenanthe. J Anim Ecol 74:131–138CrossRefGoogle Scholar
  101. Schmaljohann H, Becker PJJ, Karaardic H, Liechti F, Naef-Daenzer B, Grande C (2010) Nocturnal exploratory flights, departure time, and direction in a migratory songbird. J Ornithol. doi: 10.1007/s10336-010-0604-y
  102. Schüz E, Weigold H (1931) Atlas des Vogelzuges nach den Beringungsergebnissen bei paläarktischen Vögeln. Friedländer & Sohn, BerlinGoogle Scholar
  103. Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Nat Acad Sci USA 106:1704–1709PubMedCrossRefGoogle Scholar
  104. Spaeth C (1990) Zur Geologie der Insel Helgoland. Küste 49:1–32Google Scholar
  105. Sparks TH, Mason CF (2004) Can we detect change in the phenology of winter migrant birds in the UK? Ibis 146:57–60CrossRefGoogle Scholar
  106. Sparks TH, Roberts DR, Crick HQP (2001) What is the value of first arrival dates of spring migrants in phenology? Avian Ecol Behav 7:75–85Google Scholar
  107. Stresemann E (1967) Vor-und Frühgeschichte der Vogelforschung auf Helgoland. J Ornithol 108:377–429CrossRefGoogle Scholar
  108. Thomas CD, Lennon JJ (1999) Birds extend their range northwards. Nature 399:213CrossRefGoogle Scholar
  109. Tøttrup AP, Thorup K, Rahbek C (2006) Changes in timing of autumn migration in North European songbird populations. Ardea 94:527–536Google Scholar
  110. van Belle J, Shamoun-Baranes J, van Loon E, Bouten W (2007) An operational model predicting autumn bird migration intensities for flight safety. J Appl Ecol 44:864–874CrossRefGoogle Scholar
  111. Vaughan R (2009) Wings and rings. A history of bird migration studies in Europe. Isabelline, PenrynGoogle Scholar
  112. Vauk G (1972) Die Vögel Helgolands. Paul Parey, HamburgGoogle Scholar
  113. Vauk G, Gräfe F (1962) Volierenfalle zum Türkentaubenfang. Vogelwarte 21:204–206Google Scholar
  114. Visbeck MH, Hurrell JW, Polvani L, Cullen HM (2001) The North Atlantic Oscillation: past, present, and future. Proc Natl Acad Sci USA 98:12876–12877PubMedCrossRefGoogle Scholar
  115. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  116. Weigold H (1922) Die wissenschaftliche Vogelfangstation im Biologischen Versuchsgarten zu Helgoland. Naturwissenschaften 10:360–364CrossRefGoogle Scholar
  117. Westgarth-Smith AR, Leroy SAG, Collins PEF, Harrington R (2007) Temporal variations in English populations of a forest insect pest, the green spruce aphid (Elatobium abietinum), associated with the North Atlantic Oscillation and global warming. Quat Int 173–174:153–160CrossRefGoogle Scholar
  118. Zink G (1973) Der Zug europäischer Singvögel. Ein Atlas der Funde beringter Vögel, 1. Lieferung. Vogelzug-Verlag, MöggingenGoogle Scholar
  119. Žydelis R, Bellebaum J, Österblom H, Vetemaa M, Schirmeister B, Stipniece A, Dagys M, van Eerden M, Garthe S (2009) Bycatch in gillnet fisheries—an overlooked threat to waterbird populations. Biol Cons 142:1269–1281Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  1. 1.Institute of Avian Research “Vogelwarte Helgoland”, Island StationHelgolandGermany

Personalised recommendations