Journal of Ornithology

, Volume 153, Issue 1, pp 115–129 | Cite as

Diet of auklet chicks in the Aleutian Islands, Alaska: similarity among islands, interspecies overlap, and relationships to ocean climate

  • Alexander L. Bond
  • Ian L. Jones
  • Jeffrey C. Williams
  • G. Vernon Byrd
Original Article


Seabirds are effective samplers of the marine environment, and can be used to measure resource partitioning among species and sites via food loads destined for chicks. We examined the composition, overlap, and relationships to changing climate and oceanography of 3,216 food loads from Least, Crested, and Whiskered Auklets (Aethia pusilla, A. cristatella, A. pygmaea) breeding in Alaska during 1994–2006. Meals comprised calanoid copepods (Neocalanus spp.) and euphausiids (Thysanoessa spp.) that reflect secondary marine productivity, with no difference among Buldir, Kiska, and Kasatochi islands across 585 km of the Aleutian Islands. Meals were very similar among species (mean Least–Crested Auklet overlap C = 0.68; Least–Whiskered Auklet overlap C = 0.96) and among sites, indicating limited partitioning of prey resources for auklets feeding chicks. The biomass of copepods and euphausiids in Least and Crested Auklet food loads was related negatively to the summer (June–July–August) North Pacific Gyre Oscillation, while in Whiskered Auklet food loads, this was negatively related to the winter (December–January–February) Pacific Decadal Oscillation, both of which track basin-wide sea-surface temperature (SST) anomalies. We found a significant quadratic relationship between the biomass of calanoid copepods in Least Auklet food loads at all three study sites and summer (June–July) SST, with maximal copepod biomass between 3–6°C (r 2 = 0.71). Outside this temperature range, zooplankton becomes less available to auklets through delayed development. Overall, our results suggest that auklets are able to buffer climate-mediated bottom-up forcing of demographic parameters like productivity, as the composition of chick meals has remained constant over the course of our study.


Aethia Aleutian Islands Auklet Climate Diet Overlap 


Seevögel „beproben” ihre marine Umwelt und können so verwendet werden, um mittels des für die Küken bestimmten Futters die Ressourcenaufteilung zwischen Arten und Orten abzuschätzen. Wir haben die Zusammensetzung, Überlappung und Beziehung zu Veränderungen in Klima und Ozeanographie von 3,216 Futterportionen von in Alaska zwischen 1994 und 2006 brütenden Zwerg-, Schopf- und Bartalken (Aethia pusilla, A. cristatella, A. pygmaea) untersucht. Die Futterportionen enthielten calanoide Ruderfußkrebse (Neocalanus spp.) und Leuchtkrebse (Thysanoessa spp.), die marine Sekundärproduktion widerspiegeln, und es gab diesbezüglich keine Unterschiede zwischen den Inseln Buldir, Kiska und Kasatochi, die sich innerhalb der Aleuten über 585 km erstrecken. Die Futterportionen waren für die verschiedenen Arten (mittlere Zwergalk-Schopfalk-Überlappung C = 0.68; Zwergalk-Bartalk-Überlappung C = 0.96) und an den verschiedenen Orten sehr ähnlich, was auf eine begrenzte Aufteilung der Beuteressourcen Küken fütternder Alken hindeutet. Die Biomasse von Ruderfuß- und Leuchtkrebsen in den Futterportionen von Zwerg- und Schopfalken stand in negativer Beziehung zur Nordpazifischen Oszillation im Sommer (Juni-August), während sie bei Bartalken in negativer Beziehung zur Pazifischen Dekaden-Oszillation im Winter (Dezember–Februar) stand. Beide Oszillationen beschreiben Anomalien der Oberflächentemperatur des Ozeans (SST) im gesamten Pazifikbecken. Wir fanden eine signifikante quadratische Beziehung zwischen der Biomasse calanoider Ruderfußkrebse in den Futterportionen von Zwergalken und der Sommer-SST (Juni–Juli) in allen drei Untersuchungsgebieten, mit einer maximalen Copepoden-Biomasse zwischen 3–6°C (r 2 = 0.71). Außerhalb dieses Temperaturbereichs ist Zooplankton für die Alken schlechter verfügbar, da es sich verzögert entwickelt. Insgesamt deuten unsere Ergebnisse darauf hin, dass Alken in der Lage sind, klimavermitteltes „Bottom-up Forcing” demographischer Parameter wie Produktivität abzupuffern, da die Zusammensetzung der Kükenmahlzeiten in unserer Studie konstant blieb.



We thank the many field workers that collected this abundance of data over the years. Especially noteworthy are the multi-year efforts of several people indicated with a dagger () in the following list: E. Andersen, M. Barrett, D. Barton, G. Beyersdorf, K. Brenneman, D. Clutter, J. Daniels, E. Drew, B. Drummond, A. Durand, J. Dussureault, C. Eggleston, K. Elkin, J. Fischer, C. Gray, M. Grinnell, J. M. Hipfner, S. Hootman, N. Jones, T. Joyce†, P. Kappes, B. Keller, S. Kissler, H. Knechtel, N. Konyukhov, S. Lantz, K. Lindquist, G. Loh, J. Marais, L. Meehan, J. Mueller, M. Murphy, R. Orben, M. Ortwerth, A. Palmer, L. Parker, J. Petersen, D. Rehder, H. Renner, A. Ritchie, N. Rojek, K. Russell, P. Ryan, S. Sapora, K. Shea, E. Sommer, L. Spitler, A. Stoertz, A. Stover, S. Syria, G. Thomson, C. VanStratt, R. Walder and H. Walsh. The M/V \( Ti\hat{g}la\hat{x} \) and her crews provided logistical support. We also thank K. Turco for prey identification. The North Pacific Research Board (NPRB, grant no. 638), Natural Sciences and Engineering Research Council of Canada, Alaska Maritime National Wildlife Refuge and Northern Scientific Training Program of Indian and Northern Affairs Canada provided financial support for this research. A consortium managed by the North Pacific Marine Science Organisation supported the North Pacific CPR survey. Consortium members that provided funding for the data used in this study include the North Pacific Research Board and Department of Fisheries and Oceans, Canada. The Institutional Animal Care Committee of Memorial University of Newfoundland (protocol 09-01-IJ and preceding) approved this project. P. H. Becker, T. W. Chapman, E. H. Miller, and two anonymous reviewers provided improvements on previous drafts of this manuscript. This is publication number 294 of the NPRB.

Supplementary material

10336_2011_704_MOESM1_ESM.doc (718 kb)
Supplementary material 1 (DOC 718 kb)


  1. Abraham CL, Sydeman WJ (2004) Ocean climate, euphausiids and auklet nesting: inter-annual trends and variation in phenology, diet and growth of a planktivorous seabird, Ptychoramphus aleuticus. Mar Ecol Prog Ser 274:235–250CrossRefGoogle Scholar
  2. Ashmole NP, Ashmole MJ (1967) Comparative feeding ecology of sea birds of a tropical oceanic island. Peabody Mus Nat Hist Bull 24:1–131Google Scholar
  3. Baltz DM, Morejohn GV (1977) Food habits and niche overlap of seabirds wintering on Monteray Bay, California. Auk 94:526–543Google Scholar
  4. Barrett RT, Asheim M, Bakken V (1997) Ecological relationships between two sympatric congeneric species, Common Murres and Thick-billed Murres, Uria aalge and U. lomvia, breeding in the Barents Sea. Can J Zool 75:618–631CrossRefGoogle Scholar
  5. Batten SD, Welch DW, Jonas T (2003) Latitudinal differences in the duration of development of Neocalanus plumchrus copepodites. Fish Oceanogr 12:201–208CrossRefGoogle Scholar
  6. Beamish RJ, Bouillon DR (1993) Pacific salmon production trends in relation to climate. Can J Fish Aquat Sci 50:1002–1016CrossRefGoogle Scholar
  7. Beamish RJ, Neville C-EM, Cass AJ (1997) Production of Fraser River sockeye salmon (Oncorhynchus nerka) in relation to decadal-scale changes in the climate and the ocean. Can J Fish Aquat Sci 54:543–554Google Scholar
  8. Bédard J (1969) Feeding of least, crested and parakeet auklets around St. Lawrence Island, Alaska. Can J Zool 47:1025–1050CrossRefGoogle Scholar
  9. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  10. Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since 1661. J Clim 14:5–10CrossRefGoogle Scholar
  11. Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30:L2183CrossRefGoogle Scholar
  12. Bond AL, Jones IL, Sydeman WJ, Minobe S, Major HL, Williams JC, Byrd GV (2011) Reproductive success of planktivorous seabirds in the North Pacific is related to ocean climate on decadal scales. Mar Ecol Prog Ser 424:205–218CrossRefGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  14. Byrd GV, Williams JC (1993) Whiskered Auklet (Aethia pygmaea). In: Poole A, Gill F (eds) The Birds of North America, No. 76. The Birds of North America Inc., PhiladelphiaGoogle Scholar
  15. Byrd GV, Sydeman WJ, Renner HM, Minobe S (2008) Responses of piscivorous seabirds at the Pribilof Islands to ocean climate. Deep-Sea Res Part II 55:1856–1867CrossRefGoogle Scholar
  16. Cairns DK (1987) Seabirds as indicators of marine food supplies. Biol Oceanogr 5:261–271Google Scholar
  17. Catry T, Ramos JA, Jaquemet S, Faulquier L, Berlincourt M, Hauselmann A, Pinet P, Le Corre M (2009) Comparative foraging ecology of a tropical seabird community of the Seychelles, western Indian Ocean. Mar Ecol Prog Ser 374:259–272CrossRefGoogle Scholar
  18. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, ChicagoGoogle Scholar
  19. Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  20. Day RH, Byrd GV (1989) Food habits of the Whiskered Auklet at Buldir Island, Alaska. Condor 91:65–72CrossRefGoogle Scholar
  21. Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchitser E, Powell TM, Rivière P (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607CrossRefGoogle Scholar
  22. Diamond AW (1983) Feeding overlap in some tropical and temperate seabirds communities. Stud Avian Biol 8:24–46Google Scholar
  23. Durant JM, Anker-Nilssen T, Stenseth NC (2003) Trophic interactions under climate fluctuations: the Atlantic Puffin as an example. Proc R Soc B 270:1461–1466PubMedCrossRefGoogle Scholar
  24. Durant JM, Anker-Nilssen T, Hjermann DØ, Stenseth NC (2004) Regime shifts in the breeding of an Atlantic Puffin population. Ecol Lett 7:388–394CrossRefGoogle Scholar
  25. Durant JM, Hjermann DØ, Frederiksen M, Charraissin JB, Le Maho Y, Sabarros PS, Crawford RJM, Stenseth NC (2009) Pros and cons of using seabirds as ecological indicators. Clim Res 39:115–129CrossRefGoogle Scholar
  26. Field SA, Tyre AJ, Jonzén N, Rhodes JR, Possingham HP (2004) Minimizing the cost of environmental management decisions by optimizing statistical thresholds. Ecol Lett 7:669–674CrossRefGoogle Scholar
  27. Flint MV, Golovkin AN (2002) How do plankivorous Least Auklets (Aethia pusilla) use foraging habitats around breeding colonies? Adaptation to mesoscale distribution of zooplankton. Oceanology 42:S114–S121Google Scholar
  28. Fraser GS, Jones IL, Hunter FM (2002) Male–female differences in parental care in monogamous Crested Auklets. Condor 104:413–423CrossRefGoogle Scholar
  29. Furness RW, Birkhead TR (1984) Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311:657–659CrossRefGoogle Scholar
  30. Gall AE, Roby DD, Irons DB, Rose IC (2006) Differential response in chick survival to diet in Least and Crested Auklets. Mar Ecol Prog Ser 308:279–291CrossRefGoogle Scholar
  31. García LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663CrossRefGoogle Scholar
  32. Gaston AJ, Gilchrist HG, Mallory ML, Smith PA (2009) Changes in seasonal events, peak food availability, and consequent breeding adjustment in a marine bird: a case of progressive mismatching. Condor 111:111–119CrossRefGoogle Scholar
  33. Gause GF (1934) The struggle for existence. Williams and Wilkins, BaltimoreGoogle Scholar
  34. Geisel TS (1955) On beyond zebra. Random House, New YorkGoogle Scholar
  35. Gjerdrum C, Vallée AMJ, St. Clair CC, Bertram DF, Ryder JL, Blackburn GS (2003) Tufted Puffin reproduction reveals ocean climate variability. Proc Natl Acad Sci USA 100:9377–9382PubMedCrossRefGoogle Scholar
  36. González-Solís J, Oro D, Jover L, Ruiz X, Pedrocchi V (1997) Trophic niche width and overlap of two sympatric gulls in the southwestern Mediterranean. Oecologia 112:75–80CrossRefGoogle Scholar
  37. Grinnell J (1917) The niche-relationships of the California Thrasher. Auk 34:427–433Google Scholar
  38. Grosbois V, Giminez O, Gaillard JM, Pradel R, Barbraud C, Clobert J, Møller AP, Weimerskirch H (2008) Assessing the impact of climate variation on survival in vertebrate populations. Biol Rev Camb Phil Soc 83:357–399CrossRefGoogle Scholar
  39. Hamer KC, Schreiber EA, Burger J (2002) Breeding biology, life histories and life history–environment Interactions in seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 217–261Google Scholar
  40. Haney JC (1991) Influence of pycnocline topography and water-column structure on marine distributions of alcids (Aves: Alcidae) in Anadyr Strait, Northern Bering Sea, Alaska. Mar Biol 110:419–435CrossRefGoogle Scholar
  41. Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–145CrossRefGoogle Scholar
  42. Harrison NM (1990) Gelatinous zooplankton in the diet of the Parakeet Auklet: comparisons with other alcids. Stud Avian Biol 14:114–124Google Scholar
  43. Hipfner JM (2008) Matches and mismatches: ocean climate, prey phenology and breeding success in a zooplanktivorous seabird. Mar Ecol Prog Ser 368:295–304CrossRefGoogle Scholar
  44. Horn HS (1966) Measurement of “overlap” in comparative ecological studies. Am Nat 100:419–424CrossRefGoogle Scholar
  45. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  46. Hunt GL Jr (1997) Physics, zooplankton and the distribution of Least Auklets in the Bering Sea—a review. ICES J Mar Sci 54:600–607CrossRefGoogle Scholar
  47. Hunt GL Jr, Harrison NM (1990) Foraging habitat and prey taken by Least Auklets at King Island, Alaska. Mar Ecol Prog Ser 65:141–150CrossRefGoogle Scholar
  48. Hunt GL Jr, Burgeson B, Sanger GA (1981) Feeding ecology of seabirds in the eastern Bering Sea. In: Hood DW, Calder JA (eds) The eastern Bering Sea shelf: oceanography and resources. University of Washington Press, Seattle, pp 629–648Google Scholar
  49. Hunt GL Jr, Russell RW, Coyle KO, Weingartner T (1998) Comparative foraging ecology of planktivorous auklets in relation to ocean physics and prey availability. Mar Ecol Prog Ser 167:241–259CrossRefGoogle Scholar
  50. Hunter FM, Jones IL, Williams JC, Byrd GV (2002) Breeding biology of the Whiskered Auklet (Aethia pygmaea) at Buldir Island, Alaska. Auk 119:1036–1051CrossRefGoogle Scholar
  51. Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–427Google Scholar
  52. Ikeda T, Hirakawa K, Kajihara N (1990) Some characteristics of a coldwater copepod Calanus cristatus from regions of the Japan Sea covered by the Tsushima Warm Current. Bull Jpn Sea Natl Fish Res Inst 40:51–65Google Scholar
  53. Irons DB, Anker-Nilssen T, Gaston AJ, Byrd GV, Falk K, Gilchrist HG, Hario M, Hjernquist M, Krasnov YV, Mosbech A, Olsen B, Petersen A, Reid JB, Robertson GJ, Strøm H, Wohl KD (2008) Fluctuations in circumpolar seabird population linked to climate oscillations. Glob Change Biol 14:1455–1463CrossRefGoogle Scholar
  54. Jakubas D, Wojczulanis-Jakubas K, Walkusz W (2007) Response of Dovekie to changes in food availability. Waterbirds 30:421–428CrossRefGoogle Scholar
  55. Jones IL (1993a) Crested Auklet (Aethia cristatella). In: Poole A, Gill F (eds) The Birds of North America, No. 70. The Birds of North America Inc., PhiladelphiaGoogle Scholar
  56. Jones IL (1993b) Least Auklet (Aethia pusilla). In: Poole A, Gill F (eds) The Birds of North America, No. 69. The Birds of North America Inc., PhiladelphiaGoogle Scholar
  57. Jones IL (1999) Assessing the role of sexual selection in adaptive radiation of the auklets (Alcidae, Aethiini). Acta Congr Int Ornithol 22:1115–1125Google Scholar
  58. Jones IL, Hunter FM, Robertson GJ (2002) Annual adult survival of Least Auklets (Aves, Alcidae) varies with large-scale climatic conditions of the North Pacific Ocean. Oecologia 133:38–44CrossRefGoogle Scholar
  59. Jones IL, Hunter FM, Robertson GJ, Fraser GS (2004) Natural variation in the sexually selected feather ornaments of Crested Auklets (Aethia cristatella) does not predict future survival. Behav Ecol 15:332–337CrossRefGoogle Scholar
  60. Jones IL, Hunter FM, Robertson GJ, Williams JC, Byrd GV (2007) Covariation among demographic and climate parameters in Whiskered Auklets Aethia pygmaea. J Avian Biol 38:450–461CrossRefGoogle Scholar
  61. Kinder TH, Hunt GL Jr, Schneider DC, Schumacher JD (1983) Correlations between seabirds and oceanic fronts around the Pribilof Islands, Alaska. Estuar Coast Shelf Sci 16:309–319CrossRefGoogle Scholar
  62. Konyukhov NB, Zubakin VA, Williams JC, Fischer J (2000) Биoлoгия paзмнoжeния мaгoй кoнюги (Aethia pygmaea): инкyбaция, paзбитиe птeнцoв и oнтoгeнeз пepьeвoгo пoкpoвa (Breeding biology of the Whiskered Auklet (Aethia pygmaea): incubation, chick growth, and feather development). Izv Rus Akad Nauk Ser Biol (Mosc) 27:205–212Google Scholar
  63. Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach and case studies. Ecol Monogr 62:67–118CrossRefGoogle Scholar
  64. Mackas DL, Goldblatt R, Lewis AG (1998) Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific. Can J Fish Aquat Sci 55:1878–1893CrossRefGoogle Scholar
  65. Major HL, Jones IL, Byrd GV, Williams JC (2006) Assessing the effects of introduced Norway rats (Rattus norvegicus) on survival and productivity of Least Auklets (Aethia pusilla). Auk 123:681–694CrossRefGoogle Scholar
  66. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1068–1078CrossRefGoogle Scholar
  67. Mills JA, Yarrall JW, Bradford-Grieve JM, Uddstrom MJ, Renwick JA, Merilä J (2008) The impact of climate fluctuation on food availability and reproductive performance of the planktivorous Red-billed Gull Larus novaehollandiae scopulinus. J Anim Ecol 77:1129–1142PubMedCrossRefGoogle Scholar
  68. Minich LI (2007) Multiple-scale temporal variation in the feeding of four species of seabird on Machias Seal Island, New Brunswick (M.Sc. thesis). Department of Biology, University of New Brunswick, FrederictonGoogle Scholar
  69. Morisita M (1959) Measuring of interspecific association and similarity between communities. Mem Fac Sci Kyushu Univ Ser E Biol 3:65–80Google Scholar
  70. Obst BS, Russell RW, Hunt GL Jr, Eppley ZA, Harrison NM (1995) Foraging radii and energetics of Least Auklets (Aethia pusilla) breeding on three Bering Sea islands. Physiol Zool 68:647–672Google Scholar
  71. Overland JE, Miletta J, Bond NA (1999) Decadal variability of the Aleutian low and its relation to high-latitude circulation. J Clim 12:1542–1548CrossRefGoogle Scholar
  72. Parsons M, Mitchell I, Butler A, Ratcliffe N, Frederikson M, Foster S, Reid JB (2008) Seabirds as indicators of the marine environment. ICES J Mar Sci 65:1520–1526CrossRefGoogle Scholar
  73. Pearson TH (1968) The feeding biology of sea-bird species breeding on the Farne Islands, Northumberland. J Anim Ecol 37:521–552CrossRefGoogle Scholar
  74. Pianka ER (1974) Niche overlap and diffuse competition. Proc Natl Acad Sci USA 74:2141–2145CrossRefGoogle Scholar
  75. Piatt JF, Roberts BD, Hatch SA (1990) Colony attendance and population monitoring of Least and Crested Auklet populations on St. Lawrence Island, Alaska. Condor 92:97–106CrossRefGoogle Scholar
  76. Piatt JF, Harding AMA, Shultz MT, Speckman SG, van Pelt TI, Drew GS, Kettle AB (2007) Seabirds as indicators of marine food supplies: Cairns revisited. Mar Ecol Prog Ser 352:221–234CrossRefGoogle Scholar
  77. Portenko LA (1934) Зaмeткa o тиxooкeaнcкиx люpикax: Aethia cristatella (Pall.) и Phaleris psittacula (Pall.) (Notes on small auks of the Pacific: Aethia cristatella (Pall.) and Phaleris psittacula (Pall.)). Tr Arkt Inst 11:5–21Google Scholar
  78. Richardson AJ, Walne AW, John AWG, Jonas TD, Lindley JA, Sims DW, Stevens D, Witt W (2006) Using continuous plankton recorder data. Prog Oceanogr 68:27–74CrossRefGoogle Scholar
  79. Ridoux V (1994) The diets and dietary segregation of seabirds at the subantarctic Crozet Islands. Mar Ornithol 22:1–192Google Scholar
  80. Roby DD (1991) Diet and postnatal energetics in convergent taxa of plankton-feeding seabirds. Auk 108:131–146Google Scholar
  81. Roby DD, Brink KL (1986) Breeding biology of Least Auklets on the Pribilof Islands, Alaska. Condor 88:336–346CrossRefGoogle Scholar
  82. Roby DD, Place AR, Ricklefs RE (1986) Assimilation and deposition of wax esters in planktivorous seabirds. J Exp Zool 238:29–41CrossRefGoogle Scholar
  83. Rodionov SN, Overland JE, Bond NA (2005) Spatial and temporal variability of the Aleutian climate. Fish Oceanogr 14:3–21CrossRefGoogle Scholar
  84. Russell RW, Harrison NM, Hunt GL Jr (1999) Foraging at a front: hydrography, zooplankton, and avian planktivory in the northern Bering Sea. Mar Ecol Prog Ser 182:77–93CrossRefGoogle Scholar
  85. Sandvik H, Erikstad KE, Barrett RT, Yoccoz NG (2005) The effect of climate on adult survival in five species of North Atlantic seabirds. J Anim Ecol 74:817–831CrossRefGoogle Scholar
  86. Schwemmer P, Garthe S, Mundry R (2008) Area utilization of gulls in a coastal farmland landscape: habitat mosaic supports niche segregation of opportunistic species. Landsc Ecol 23:355–367CrossRefGoogle Scholar
  87. Searing GF (1977) Some aspects of the ecology of cliff-nesting seabirds at Kongkok Bay, St. Lawrence Island, Alaska, during 1976. In: Environmental assessment of the Alaskan continental shelf. Annual reports of principle investigators for the year ending March 1977. Volume V. Receptors—Birds. National Oceanic and Atmospheric Administration and Bureau of Land Management, Boulder, pp 263–412Google Scholar
  88. Sheffield Guy LM, Roby DD, Gall AE, Irons DB, Rose IC (2009) The influence of diet and ocean conditions on productivity of auklets on St. Lawrence Island, Alaska. Mar Ornithol 37:227–236Google Scholar
  89. Springer AM, McRoy CP, Turco KR (1989) The paradox of pelagic food webs in the northern Bering Sea. II. Zooplankton communities. Cont Shelf Res 9:359–386Google Scholar
  90. Thayer JA, Bertram DF, Hatch SA, Hipfner JM, Slater L, Sydeman WJ, Watanuki Y (2008) Forage fish of the Pacific Rim as revealed by diet of a piscivorous seabird: synchrony and relationships with sea surface temperature. Can J Fish Aquat Sci 65:1610–1622CrossRefGoogle Scholar
  91. Trenberth KE, Hurrell JW (1994) Decadal atmosphere–ocean variations in the Pacific. Clim Dyn 9:303–319Google Scholar
  92. Troy DM, Bradstreet MSW (1991) Marine bird abundance and habitat use. In: Truitt JC, Kertell K (eds) Marine birds and mammals of the Unimak Pass area: abundance, habitat use and vulnerability (OCS Study MMS 91-0038). LGL Alaska Research Associates, Inc., Anchorage, pp 5.1–5.70Google Scholar
  93. Votier SC, Hatchwell BJ, Beckerman AP, McCleery RH, Hunter FM, Pellatt J, Trinder M, Birkhead TR (2005) Oil pollution and climate have wide-scale impacts on seabird demographics. Ecol Lett 8:1157–1164PubMedCrossRefGoogle Scholar
  94. Wallace AR (1876) The geographical distribution of animals, with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth’s surface. Harper & Brothers, New YorkGoogle Scholar
  95. Wolf SG, Sydeman WJ, Hipfner JM, Abraham CL, Tershey BR, Croll DA (2009) Range-wide reproductive consequences of ocean climate variability for the seabird Cassin’s Auklet. Ecology 90:742–753PubMedCrossRefGoogle Scholar
  96. Ydenberg RC (1989) Growth-mortality trade-offs and the evolution of juvenile life histories in the Alcidae. Ecology 70:1494–1506CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Alexander L. Bond
    • 1
  • Ian L. Jones
    • 1
  • Jeffrey C. Williams
    • 2
  • G. Vernon Byrd
    • 2
  1. 1.Department of BiologyMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Alaska Maritime National Wildlife RefugeUS Fish and Wildlife ServiceHomerUSA

Personalised recommendations