Advertisement

Journal of Ornithology

, Volume 152, Issue 4, pp 1055–1061 | Cite as

Indications of phenotypic plasticity in moulting birds: captive geese reveal adaptive changes in mineralisation of their long bones during wing moult

  • Steven J. Portugal
  • Patrick J. Butler
  • Jonathan A. Green
  • Phillip Cassey
Short Note

Abstract

Bone is continually undergoing cycles of apposition and resorption referred to as adaptive remodelling. We tested the hypothesis that captive moulting Barnacle Geese (Branta leucopsis) would show adaptive bone mineralisation during the flightless period of their annual flight feather moult, despite having never flown. The three leg bones showed selective changes in mineralisation in terms of mass and mineral content, while the wing bones did not change in mass or mineral content. The tibia/fibula was the only bone to also undergo significant changes in mass, increasing as moult progressed then decreasing significantly towards the end of moult. This was not a response to changing body mass. Instead, we propose that this is a response to the requirement for increased strength brought about by the significant increase in the force producing muscles that attach to the tibia. The femur and tarsometarsus showed the opposite trend, with mineral content decreasing significantly during mid-moult before increasing again at the end. These changes were also independent of changing body mass, suggesting instead that the calcium, or rather calcium derivatives, were mobilised for feather regrowth. This study demonstrates significant and selective adaptive natural changes in bone mass and mineralization that have not been previously demonstrated. That they should also occur in captive birds which show a decrease in locomotion during the wing moult period, suggests a high endogenous capacity for these changes.

Keywords

Bone mineralisation Barnacle Goose Bone changes Mineral content Moult 

Zusammenfassung

Knochengewebe macht fortwährende Zyklen von Aufbau und Abbau durch, die als adaptive Remodellierung bezeichnet werden. Wir haben die Hypothese getestet, dass in Gefangenschaft gehaltene mausernde Weißwangengänse (Branta leucopsis) während der flugunfähigen Phase ihrer jährlichen Flugfedermauser adaptive Knochenmineralisation zeigen, obwohl sie niemals geflogen sind. Die drei Beinknochen zeigten selektive Veränderungen der Mineralisation bezüglich Masse und Mineralgehalt, während sich Masse und Mineralgehalt der Flügelknochen nicht änderten. Der Unterschenkelknochen war der einzige Knochen, der auch eine signifikante Änderung seiner Gesamtmasse erfuhr, die im Verlauf der Mauser zunächst anstieg und dann zum Ende der Mauser hin abnahm. Dies war nicht auf Veränderungen der Körpermasse zurückzuführen. Stattdessen schlagen wir vor, dass es damit zusammenhängt, dass dieser Knochen stabiler werden muss, da sich die am Schienbein ansetzenden Kraft produzierenden Muskeln vergrößern. Oberschenkel und Tarsometatarsus offenbarten den entgegengesetzten Trend—der Mineralgehalt nahm in der Mitte der Mauserperiode signifikant ab und dann gegen Ende wieder zu. Diese Veränderungen waren ebenfalls unabhängig von Änderungen der Körpermasse und deuten stattdessen darauf hin, dass Kalzium oder eher Kalziumderivate für das Federwachstum mobilisiert wurden. Diese Studie zeigt signifikante und selektive adaptive natürliche Veränderungen von Knochenmasse und -mineralisation, die zuvor nicht nachgewiesen worden sind. Dass diese Veränderungen auch bei in Gefangenschaft gehaltenen Vögeln auftreten, die sich während der Flügelmauser weniger fortbewegen, deutet auf eine hohe endogene Kapazität für diese Veränderungen hin.

Notes

Acknowledgments

We are grateful to Jo Cooper and Golo Maurer for processing bone samples and to Amy Peters for providing line drawings. We thank the following for assistance with the geese: Alan Gardner, David Gardiner, Pete Jones, Julia Myatt, Susannah Thorpe and Craig White. We are also grateful to the two anonymous reviewers who provided helpful comments. The work was part-funded by a BBSRC studentship to S.J.P. and completed while S.J.P. was a Leverhulme Trust postdoctoral fellow.

References

  1. Adams PA, Roberson GJ, Jones IL (2000) Time-activity budgets of harlequin ducks molting in the Gannet Islands, Labrador. Condor 102:703–708CrossRefGoogle Scholar
  2. Ankney CD (1979) Does the wing moult cause nutritional stress in lesser snow geese? Auk 96:68–72Google Scholar
  3. Antalíková J, Baranovská M, Mravová I, Sabo V, Škrobánek P (2001) Different influence of hypodynamy on calcium and phosphorus levels in bones of male and female Japanese quails. Physiol Res 50:197–204PubMedGoogle Scholar
  4. Bailey RO (1981) The postbreeding ecology of the redhead duck (Anas americana) on Long Island Bay, Lake Winnipegosis, Manitoba. PhD Dissertation, McGill University, MontrealGoogle Scholar
  5. Biewener AA, Bertram JE (1994) Structural response of growing bone to exercise and disuse. J Appl Physiol 76:946–955PubMedGoogle Scholar
  6. Bloomfield SA, Allen MR, Hogan HA, Delp MD (2002) Site and compartment specific changes in bone with hindlimb unloading in mature adult rats. Bone 3:14–157Google Scholar
  7. Cowin SC (1998) On mechanosensation in bone under microgravity. Bone 22:119–125CrossRefGoogle Scholar
  8. Dietz MW, Piersma T, Dekinga A (1999) Body-building without power training: endongenously regulated pectoral muscle hypertrophy in confined shorebirds. J Exp Biol 202:2831–2837PubMedGoogle Scholar
  9. Ferretti JL, Cointry GR, Capozza RF, Frost HM (2003) Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Age Develop 124:269–279CrossRefGoogle Scholar
  10. Fox AD, Kahlert J (2005) Changes in body mass and organ size during wing moult in non-breeding greylag geese Anser anser. J Avian Biol 36:538–548CrossRefGoogle Scholar
  11. Fritton SP, McLeod KJ, Rubin CT (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech 33:317–325PubMedCrossRefGoogle Scholar
  12. Guozhen Q, Hongfa X (1986) Molt and resting metabolic rate in the common teal Anas crecca and the shoveler Anas clypeata. Acta Zool Sin 32:73–84Google Scholar
  13. Habib MB, Ruff C (2008) The effects of locomotion on the structural characteristics of avian limb bones. Zool J Linn Soc 153:601–624CrossRefGoogle Scholar
  14. Hanson HC, Jones RL (1976) The biogeochemistry of blue, snow and Ross’s geese. Southern Illinois University Press, CarbondaleGoogle Scholar
  15. Hohman WL, Ankney CD, Gordon DH (1992) Ecology and management of postbreeding waterfowl. In: Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (eds) Ecology, management of breeding waterfowl. University of Minnesota, Minneapolis, pp 128–189Google Scholar
  16. Kahlert J (2003) The constraints on habitat use in wing-moulting greylag geese, Anser anser, caused by anti-predator displacements. Ibis 145:E45–E52CrossRefGoogle Scholar
  17. Kahlert J, Fox AD, Ettrup H (1996) Nocturnal feeding in moulting Greylag Geese Anser anser–an anti predator response? Ardea 84:15–22Google Scholar
  18. Kear J (2005) Ducks, geese and swans, vol 1. Oxford University Press, OxfordGoogle Scholar
  19. Larison JR, Crock JG, Snow CM (2001) Timing of mineral sequestration in leg bones of white-tailed ptarmigan. Auk 118:1057–1062CrossRefGoogle Scholar
  20. Main RP, Biewener AA (1997) Skeletal strain patterns and growth in the emu hindlimb during ontogeny. J Exp Biol 210:2676–2690CrossRefGoogle Scholar
  21. McAlister GB, Moyle DD (1983) Some mechanical properties of goose femoral cortical bone. J Biomech 16:577–589PubMedCrossRefGoogle Scholar
  22. Meister W (1951) Changes in histological structure of the long bones of birds during the molt. Anat Rec 111:1–21PubMedCrossRefGoogle Scholar
  23. Murphy ME, King JR (1992) Energy and nutrient use during molt by white-crowned sparrows Zonotrichia leucophyrys. Ornis Scand 23:304–313CrossRefGoogle Scholar
  24. Newman S, Leeson S (1998) Effects of housing birds in cages or an aviary system on bone characteristics. Poult Sci 77:1492–1496PubMedGoogle Scholar
  25. Owen M, Ogilvie MA (1979) The molt and weights of barnacle geese in Spitsbergen. Condor 81:42–52CrossRefGoogle Scholar
  26. Pays L, Charvet I, Hemming FJ, Saxod R (1997) Close link between cutaneous nerve pattern development and feather morphogenesis demonstrated by experimental production of neo-apteria and ectopic feathers: implications of chondroitin sulphate proteoglycans and other matrix molecules. Anat Embryol 195:457–466PubMedCrossRefGoogle Scholar
  27. Pead MJ, Suswillo R, Skerry TM, Vedi S, Lanyon LE (1988) Increased 3H-uridine levels in osteocytes following a single short period of dynamic bone loading in vivo. Calcif Tiss Int 43:92–96CrossRefGoogle Scholar
  28. Portugal SJ, Green JA, Butler PJ (2007) Annual changes in body mass and resting metabolism in captive barnacle geese (Branta leucopsis): the importance of wing moult. J Exp Biol 210:1391–1397. doi: 10.1242/jeb.004598 PubMedCrossRefGoogle Scholar
  29. Portugal SJ, Thorpe SKS, Green JA, Myatt JP, Butler PJ (2009a) Testing the use/disuse hypothesis: pectoral and leg muscle changes in captive barnacle geese Branta leucopsis during wing moult. J Exp Biol 212:2403–2410. doi: 10.1242/jeb.021774 PubMedCrossRefGoogle Scholar
  30. Portugal SJ, Green JA, Cassey P, Frapell PB, Butler PJ (2009b) Predicting the rate of oxygen consumption from heart rate in barnacle geese (Branta leucopsis): effects of captivity and annual changes in body condition. J Exp Biol 212:2941–2948PubMedCrossRefGoogle Scholar
  31. Portugal SJ, Issac R, Quinton KL, Reynolds SJ (2010) Do captive waterfowl alter their behaviour patterns during the flightless period of moult? J Ornithol 151:443–448. doi: 10.1007/s10336-009-0474-3 CrossRefGoogle Scholar
  32. Raveling DG, Sifri M, Knudsen RB (1978) Seasonal variation of femur and tibiotarsus constituents in Canade geese. Condor 80:246–248CrossRefGoogle Scholar
  33. Reich A, Jaffe N, Tong A, Genina O, Pines M, Sklan D, Nussinovitch A, Mosonego-Ornan E (2005) Weight loading young chicks inhibits bone elongation and promotes growth plate ossification and vascularization. J App Physiol 98:2381–2389. doi: 10.1152/japplphysiol.01073.2004 CrossRefGoogle Scholar
  34. Rubenson J, Henry HT, Dimoulas PM, Marsh RL (2006) The cost of running uphill: linking organismal and muscle energy use in guinea fowl (Numida meleagris). J Exp Biol 209:2395–2408PubMedCrossRefGoogle Scholar
  35. Sibonga JD, Zhang M, Evans GL, Westerlind KC, Cavolina JM, Morey-Holton E, Turner RT (2000) Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone 27:535–540PubMedCrossRefGoogle Scholar
  36. Skerry TM, Bitensky L, Chayen J, Lanyon LE (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Min Res 4:783–788CrossRefGoogle Scholar
  37. Thompson JE (1992) The nutritional ecology of molting male Canvasbacks (Aythya valisineria) in central-Alberta. MSc thesis, University of MissouriGoogle Scholar
  38. Wallace JM, Rajachar RM, Allen MR, Bloomfield SA, Robey PG, Young MF, Kohn DH (2007) Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Bone 40:1120–1127. doi: 10.1016/j.bone.2006.12.002 PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Steven J. Portugal
    • 1
    • 3
  • Patrick J. Butler
    • 1
  • Jonathan A. Green
    • 2
  • Phillip Cassey
    • 1
    • 4
  1. 1.Centre for Ornithology, School of BiosciencesUniversity of BirminghamBirminghamUK
  2. 2.School of Biological SciencesUniversity of LiverpoolLiverpoolUK
  3. 3.Structure and Motion LabRoyal Veterinary CollegeHatfieldUK
  4. 4.School of Earth and Environmental SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations