Journal of Ornithology

, Volume 152, Supplement 1, pp 5–23 | Cite as

Optimal bird migration revisited

  • Thomas AlerstamEmail author


Using optimality perspectives is now regarded as an essential way of analysing and understanding adaptations and behavioural strategies in bird migration. Optimization analyses in bird migration research have diversified greatly during the two recent decades with respect to methods used as well as to topics addressed. Methods range from simple analytical and geometric models to more complex modeling by stochastic dynamic programming, annual routine models and multiobjective optimization. Also, game theory and simulation by selection algorithms have been used. A wide range of aspects of bird migration have been analyzed including flight, fuel deposition, predation risk, stopover site use, transition to breeding, routes and detours, daily timing, fly-and-forage migration, wind selectivity and wind drift, phenotypic flexibility, arrival time and annual molt and migration schedules. Optimization analyses have proven to be particularly important for defining problems and specifying questions and predictions about the consequences of minimization of energy, time and predation risk in bird migration. Optimization analyses will probably also be important in the future, when predictions about bird migration strategies can be tested by much new data obtained by modern tracking techniques and when the importance of new trade-offs, associated with, e.g., digestive physiology, metabolism, immunocompetence and disease, need to be assessed in bird migration research.


Flight Stopover Wind Routes Timing 


In der Vogelzugsforschung erwiesen sich Optimierungsperspektiven für die Analyse und das Verständnis von Adaptionen und Verhaltensstrategien als äusserst essentiell. Hierbei haben sich Optimierungsanalysen in den letzten zwei Jahrzehnten in der Vogelzugsforschung sowohl methodisch als auch thematisch stark diversifiziert. Dabei reichen die Methoden von einfachen, analytischen und geometrischen bis zu mehr komplexen Modellen mit stochastisch-dynamischer Programmierung, Jahresroutinemodellen und multiobjektiver Optimierung. Auch Spieltheorie und Simulierungen mit selektiven Algorithmen wurden angewandt. Analysiert wurde ein weites Spektrum von Vogelzugaspekten, darunter Vogelflug, Fettablagerung, Prädationsdruck, Rastverhalten, Übergang zum Brüten, Zugwege und Umwege, Flug- und Rastwanderungen, Tagesrhythmen, Windselektivität und Winddrift, phenotypische Plastizität, Ankunftszeit und jährliche Zug- und Mauser. Optimierungsanalysen haben sich für die Definition von Problemen und für das Spezifizieren von Fragestellungen und Voraussagen bezüglich Konsequenzen der Minimierung von Energie, Zeit und Prädationsrisiko als speziell wichtig erwiesen. Für die Zukunft werden Optimierungsanalysen wahrscheinlich an Bedeutung gewinnen, wenn es darum geht, Voraussagen über Vogelzugstrategien mit neuen Daten und moderner Technik zu testen und wenn abgeschätzt werden muss, wie wichtig neue Kompromisse in Verbindung mit zum Beispiel Verdauungsphysiologie, Metabolismus, Immunabwehr und Krankheiten sind.



I am very grateful to Franz Bairlein for suggesting this review and for giving much support and stimulation both personally and by organizing the very fruitful 100th year Anniversary Scientific Symposium at the Institute of Avian Research in Wilhelmshaven 2010. I am also grateful to Johan Bäckman for comments and for assistance with figures, and to Heiko Schmaljohann for valuable comments. My work is funded by the Swedish Research Council and I am associated with the Centre of Animal Movement Research at Lund University.


  1. Åkesson S (1993) Coastal migration and wind drift compensation in nocturnal passerine migrants. Ornis Scand 24:87–94CrossRefGoogle Scholar
  2. Alerstam T (1979a) Wind as selective agent in bird migration. Ornis Scand 10:76–93CrossRefGoogle Scholar
  3. Alerstam T (1979b) Optimal use of wind by migrating birds: combined drift and overcompensation. J Theor Biol 79:341–353PubMedCrossRefGoogle Scholar
  4. Alerstam T (1985) Strategies of migratory flight, illustrated by arctic and common terns, Sterna paradisaea and Sterna hirundo. In: Rankin MA (ed) Migration: mechanisms and adaptive significance, contributions in marine science supplement, vol 27, pp 580–603Google Scholar
  5. Alerstam T (1991) Bird flight and optimal migration. Trends Ecol Evol 6:210–215PubMedCrossRefGoogle Scholar
  6. Alerstam T (2000) Bird migration performance on the basis of flight mechanics and trigonometry. In: Domenici P, Blake RW (eds) Biomechanics in animal behaviour. BIOS, Oxford, pp 105–124Google Scholar
  7. Alerstam T (2001) Detours in bird migration. J Theor Biol 209:319–331PubMedCrossRefGoogle Scholar
  8. Alerstam T (2003) Bird migration speed. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 253–267Google Scholar
  9. Alerstam T (2006) Strategies for the transition to breeding in time-selected bird migration. Ardea 94:347–357Google Scholar
  10. Alerstam T (2008) Great-circle migration of arctic birds. In: Proceedings conference RIN08—animal navigation, paper no. 23, 9 pp (CD). Royal Institute of Navigation, LondonGoogle Scholar
  11. Alerstam T (2009) Flight by night or day? Optimal daily timing of bird migration. J Theor Biol 258:530–536PubMedCrossRefGoogle Scholar
  12. Alerstam T, Hedenström A (1998) The development of bird migration theory. J Avian Biol 29:343–369CrossRefGoogle Scholar
  13. Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 331–351Google Scholar
  14. Alerstam T, Pettersson S-G (1976) Do birds use waves for orientation when migrating across the sea? Nature 259:205–207CrossRefGoogle Scholar
  15. Alerstam T, Pettersson S-G (1977) Why do migrating birds fly along coastlines? J Theor Biol 65:699–712PubMedCrossRefGoogle Scholar
  16. Alerstam T, Hjort C, Högstedt G, Jönsson PE, Karlsson J, Larsson B (1986) Spring migration of birds across the Greeland inland ice. Meddr Grønland Biosci 21:1–38Google Scholar
  17. Alerstam T, Bäckman J, Gudmundsson GA, Hedenström A, Henningsson SS, Karlsson H, Rosén M, Strandberg R (2007) A polar system of intercontinental bird migration. Proc R Soc Lond B 274:2523–2530CrossRefGoogle Scholar
  18. Alerstam T, Chapman JW, Bäckman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen RHG, Hill JK (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc Lond B (in press)Google Scholar
  19. Altizer S, Bartel R, Han BA (2011) Animal migration and infectious disease risk. Science 331:296–302PubMedCrossRefGoogle Scholar
  20. Bäckman J, Alerstam T (2001) Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus. Proc R Soc Lond B 268:1081–1087CrossRefGoogle Scholar
  21. Bairlein F (1988) How do migratory songbirds cross the Sahara? Trends Ecol Evol 3:191–194PubMedCrossRefGoogle Scholar
  22. Barta Z, McNamara JM, Houston AI, Weber T, Hedenström A, Feró O (2008) Optimal moult strategies in migratory birds. Philos Trans R Soc Lond B 363:211–229CrossRefGoogle Scholar
  23. Battley PF, Rogers DI, van Gils JA, Piersma T, Hassell CJ, Boyle A, Yang H-Y (2005) How do red knots Calidris canutus leave Northwest Australia in May and reach the breeding grounds in June? Predictions of stopover times, fuelling rates and prey quality in the Yellow Sea. J Avian Biol 36:494–500CrossRefGoogle Scholar
  24. Bauer S, van Dinther M, Høgda KA, Klaassen M, Madsen J (2008) The consequences of climate-driven stop-over sites changes on migration schedules and fitness of Arctic geese. J Anim Ecol 77:654–660PubMedCrossRefGoogle Scholar
  25. Bauer S, Ens BJ, Klaassen M (2010) Many routes lead to Rome: potential causes for the multi-route migration system of red knots, Calidris canutus islandica. Ecology 91:1822–1831PubMedCrossRefGoogle Scholar
  26. Bayly NJ (2006) Optimality in avian migratory fuelling behaviour: a study od a trans-Sahara migrant. Anim Behav 71:173–182CrossRefGoogle Scholar
  27. Bayly NJ (2007) Extreme fattening by sedge warblers, Acrocephalus schoenobaenus, in not triggered by food availability alone. Anim Behav 74:471–479CrossRefGoogle Scholar
  28. Beekman JH, Nolet BA, Klaassen M (2002) Skipping swans: fuelling rates and wind conditions determine differential use of migratory stopover sites of Bewick’s swans Cygnus bewickii. Ardea 90:437–460Google Scholar
  29. Bibby CJ, Green RE (1981) Autumn migration strategies of reed and sedge warblers. Ornis Scand 12:1–12CrossRefGoogle Scholar
  30. Biebach H (1990) Strategies of trans-Sahara migrants. In: Gwinner E (ed) Bird migration. Physiology and ecophysiology. Springer, Berlin, pp 352–367Google Scholar
  31. Bingman VP, Able KP, Kerlinger P (1982) Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Anim Behav 30:49–53CrossRefGoogle Scholar
  32. Bloch R, Bruderer B (1982) The air speed of migrating birds and its relationships with the wind. Behav Ecol Sociobiol 11:19–24CrossRefGoogle Scholar
  33. Carpenter FL, Paton DC, Hixon MA (1983) Weight gain and adjustment of feeding territory size in migrant rufous hummingbirds. Proc Natl Acad Sci USA 80:7259–7263Google Scholar
  34. Chernetsov N (2010) Recent experimental data on the energy costs of avian flight call for a revision of optimal migration theory. Auk 127:232–234CrossRefGoogle Scholar
  35. Clark CW, Butler RW (1999) Fitness components of avian migration: a dynamic model of western sandpiper migration. Evol Ecol Res 1:443–457Google Scholar
  36. Dänhardt J, Lindström Å (2001) Optimal departure decisions of songbirds from an experimental stopover site and the significance of weather. Anim Behav 62:235–243CrossRefGoogle Scholar
  37. Delingat J, Dierschke V, Schmaljohann H, Mendel B, Bairlein F (2006) Daily stopovers as optimal migration strategy in a long-distance migrating passerine; the northern wheatear Oenanthe oenanthe. Ardea 94:593–605Google Scholar
  38. Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in northern Wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078CrossRefGoogle Scholar
  39. Dierschke V (2003) Predation hazard during migratory stopover: are light or heavy birds under risk? J Avian Biol 34:24–29CrossRefGoogle Scholar
  40. Dierschke V, Mendel B, Schmaljohann H (2005) Differential timing of spring migration in northern wheatears Oenanthe oenanthe: hurried males or weak females? Behav Ecol Sociobiol 57:470–480CrossRefGoogle Scholar
  41. Dietz MW, Spaans B, Dekinga A, Klaassen M, Korthals H, van Leeuwen C, Piersma T (2010) Do red knots (Calidris canutus islandica) routinely skip Iceland during southward migration? Condor 112:48–55CrossRefGoogle Scholar
  42. Duriez O, Bauer S, Destin A, Madsen J, Nolet BA, Stillman RA, Klaassen M (2009) What decision rules might pink-footed geese use to depart on migration? An individual-based model. Behav Ecol 20:560–569CrossRefGoogle Scholar
  43. Eichhorn G, Drent RH, Stahl J, Leito A, Alerstam T (2009) Skipping the Baltic: the emergence of a dichotomy of alternative spring migration strategies in Russian barnacle geese. J Anim Ecol 78:63–72PubMedCrossRefGoogle Scholar
  44. Engel S, Bowlin MS, Hedenström A (2010) The role of wind-tunnel studies in integrative research on migration biology. Integr Comp Biol 50:323–335PubMedCrossRefGoogle Scholar
  45. Erni B, Liechti F, Bruderer B (2002) Stopover strategies in passerine bird migration: a simulation study. J Theor Biol 219:479–493PubMedCrossRefGoogle Scholar
  46. Erni B, Liechti F, Bruderer B (2003) How does a first year passerine migrant find its way? Simulating migration mechanisms and behavioural adaptations. Oikos 103:333–340CrossRefGoogle Scholar
  47. Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine migration between Europe and Africa. Behav Ecol 16:732–740CrossRefGoogle Scholar
  48. Fagerström T, Wiklund C (1982) Why do males emerge before females? Protandry as a mating strategy in male and female butterflies. Oecologia 52:164–166CrossRefGoogle Scholar
  49. Felicísimo AM, Munoz J, González-Solis J (2008) Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS One 3:e2928PubMedCrossRefGoogle Scholar
  50. Fransson, T (1998) Patterns of migratory fuelling in whitethroats Sylvia communis in relation to departure. J Avian Biol 29:569–573Google Scholar
  51. Fuchs T, Haney A, Jechura TJ, Moore FR, Bingman VP (2006) Daytime naps in night-migrating birds: behavioural adaptations to seasonal sleep deprivation in the Swainson’s thrush, Catharus ustulatus. Anim Behav 72:951–958CrossRefGoogle Scholar
  52. Gauthreaux SA Jr, Michi JE, Belser CG (2005) The temporal and spatial structure of the atmosphere and its influence on bird migration strategies. In: Greenberg R, Marra PP (eds) Birds of two worlds. The ecology and evolution of migration. John Hopkins University Press, Baltimore, pp 182–193Google Scholar
  53. Gill RE Jr, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalk JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier. Proc R Soc Lond B 276:447–457CrossRefGoogle Scholar
  54. Green M (2004) Flying with the wind—spring migration of Arctic-breeding waders and geese over South Sweden. Ardea 92:145–160Google Scholar
  55. Gschweng M, Kalko EKV, Querner U, Fiedler W, Berthold P (2008) All across Africa: highly individual migration routes of Eleonora’s falcon. Proc R Soc Lond B 275:2887–2896CrossRefGoogle Scholar
  56. Gudmundsson GA, Lindström Å, Alerstam T (1991) Optimal fat loads and long distance flights by migrating knots Calidris canutus, sanderlings C. alba and turnstones Arenaria interpres. Ibis 133:140–152CrossRefGoogle Scholar
  57. Handel CM, Gill RE Jr (2010) Wayward youth: trans-Beringian movement and differential southward migration by juvenil sharp-tailed sandpipers. Arctic 63:273–288Google Scholar
  58. Hasselquist D, Lindström Å, Jenni-Eiermann S, Koolhaas A, Piersma T (2007) Long flights do not influence immune responses of a long-distant migrant bird: a wind-tunnel experiment. J Exp Biol 210:1123–1131PubMedCrossRefGoogle Scholar
  59. Hedenström A (1993) Migration by soaring or flapping flight in birds: the relative importance of energy cost and speed. Philos Trans R Soc Lond B 342:353–361CrossRefGoogle Scholar
  60. Hedenström A (2008) Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos Trans R Soc Lond B 363:287–299CrossRefGoogle Scholar
  61. Hedenström A (2009) Optimal migration strategies in bats. J Mammal 90:1298–1309CrossRefGoogle Scholar
  62. Hedenström A, Alerstam T (1994) Optimal climbing flight in migrating birds: predictions and observations of knot and turnstone. Anim Behav 48:47–54CrossRefGoogle Scholar
  63. Hedenström A, Alerstam T (1995) Optimal flight speed of birds. Philos Trans R Soc Lond B 348:471–487CrossRefGoogle Scholar
  64. Hedenström A, Alerstam T (1996) Skylark optimal flight speeds for flying nowhere and somewhere. Behav Ecol 7:121–126CrossRefGoogle Scholar
  65. Hedenström A, Alerstam T (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189:227–234PubMedCrossRefGoogle Scholar
  66. Hedenström A, Alerstam T (1998) How fast can birds migrate? J Avian Biol 29:424–432CrossRefGoogle Scholar
  67. Hedenström A, Barta Z, Helm B, Houston AI, McNamara JM, Jonzén N (2007) Migration speed and scheduling of annual events by migrating birds in relation to climate change. Clim Res 35:79–91CrossRefGoogle Scholar
  68. Henningsson P, Karlsson H, Bäckman J, Alerstam T, Hedenström A (2009) Flight speeds of swifts (Apus apus): seasonal differences smaller than expected. Proc R Soc Lond B 276:2395–2401CrossRefGoogle Scholar
  69. Henningsson P, Johansson C, Hedenström A (2010) How swift are swifts Apus apus? J Avian Biol 41:94–98CrossRefGoogle Scholar
  70. Hildén O, Saurola P (1982) Speed of autumn migration of birds ringed in Finland. Ornis Fenn 59:140–143Google Scholar
  71. Holmgren N, Hedenström A (1995) The scheduling of molt in migratory birds. Evol Ecol 9:354–368CrossRefGoogle Scholar
  72. Houston AI (1998) Models of optimal avian migration: state, time and predation. J Avian Biol 29:395–404CrossRefGoogle Scholar
  73. Houston AI (2000) The strength of selection in the context of migration speed. Proc R Soc Lond B 267:2393–2395CrossRefGoogle Scholar
  74. Jonker RM, Eichhorn G, van Langevelde F, Bauer S (2010) Predation danger can explain changes in timing of migration: the case of the barnacle goose. PLoS One 5:e11369PubMedCrossRefGoogle Scholar
  75. Jonzén N, Hedenström A, Lundberg P (2007) Climate change and the optimal arrival of migratory birds. Proc R Soc Lond B 274:269–274CrossRefGoogle Scholar
  76. Karlsson H, Bäckman J, Nilsson C, Alerstam T (2010) Migrating birds fly faster in spring than in autumn. In: Karlsson H (ed) There and back again: nocturnal migratory behaviour of birds during spring and autumn. PhD thesis, Lund University, pp 79–87Google Scholar
  77. Kerlinger P, Moore FR (1989) Atmospheric structure and avian migration. In: Power DM (ed) Current ornithology, vol 6. Plenum, New York, pp 109–142Google Scholar
  78. Klaassen M, Lindström Å (1996) Departure fuel loads in time-minimizing migrating birds can be explained by the energy costs of being heavy. J Theor Biol 183:29–34CrossRefGoogle Scholar
  79. Klaassen M, Bauer S, Madsen J, Possingham H (2008a) Optimal management of a goose flyway: migrant management at minimum cost. J Appl Ecol 45:1446–1452CrossRefGoogle Scholar
  80. Klaassen RHG, Strandberg R, Hake M, Alerstam T (2008b) Flexibility in daily travel routines causes regional variation in bird migration speed. Behav Ecol Sociobiol 62:1427–1432CrossRefGoogle Scholar
  81. Klaassen RHG, Strandberg R, Hake M, Olofsson P, Tøttrup AP, Alerstam T (2010) Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry. J Avian Biol 41:200–207CrossRefGoogle Scholar
  82. Klaasen RHG, Hake M, Strandberg R, Alerstam T (2011) Geographic and temporal flexibility in the response to crosswinds by migrating raptors. Proc R Soc Lond B 278:1339–1346Google Scholar
  83. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950CrossRefGoogle Scholar
  84. Kokko H, Gunnarsson TG, Morrell LJ, Gill JA (2006) Why do female migratory birds arrive later than males? J Anim Ecol 75:1293–1303PubMedCrossRefGoogle Scholar
  85. Kullberg C, Fransson T, Jacobsson S (1996) Impaired predator evasion in fat blackcaps (Sylvia atricapilla). Proc R Soc Lond B 265:1659–1664CrossRefGoogle Scholar
  86. Kvist A, Lindström Å, Green M, Piersma T, Visser GH (2001) Carrying large fuel loads during sustained bird flight is cheaper than expected. Nature 413:730–732PubMedCrossRefGoogle Scholar
  87. Lank DB, Ydenberg RC (2003) Death and danger at migratory stopovers: problems with “predation risk”. J Avian Biol 34:225–228CrossRefGoogle Scholar
  88. Lank DB, Butler RW, Ireland J, Ydenberg RC (2003) Effects of predation danger on migration strategies of sandpipers. Oikos 103:303–319CrossRefGoogle Scholar
  89. Liechti F (1995) Modelling optimal heading and airspeed of migrating birds in relation to energy expenditure and wind influence. J Avian Biol 26:330–336CrossRefGoogle Scholar
  90. Liechti F (2006) Birds: blowin’ by the wind? J Ornithol 147:202–211CrossRefGoogle Scholar
  91. Liechti F, Bruderer B (1998) The relevance of wind for optimal migration theory. J Avian Biol 29:561–568CrossRefGoogle Scholar
  92. Liechti F, Hedenström A, Alerstam T (1994) Effects of sidewinds on optimal flight speed of birds. J Theor Biol 170:219–225CrossRefGoogle Scholar
  93. Lind J, Creswell W (2006) Anti-predation behaviour during bird migration: the benefit of studying multiple behavioural dimensions. J Ornithol 147:310–316CrossRefGoogle Scholar
  94. Lindström Å (1990) The role of predation risk in stopover habitat selection in migrating bramblings Fringilla montifringilla. Behav Ecol 1:102–106CrossRefGoogle Scholar
  95. Lindström Å, Alerstam T (1992) Optimal fat loads in migrating birds: a test of the time minimization hypothesis. Am Nat 140:477–491PubMedCrossRefGoogle Scholar
  96. Lindström Å, Gill RE Jr, Jamieson SE, McCaffery B, Wennerberg L, Wikelski M, Klaassen M (2011) A puzzling migratory detour: are fueling conditions in Alaska driving the movement of juvenile sharp-tailed sandpipers? Condor 113:129–139CrossRefGoogle Scholar
  97. López-López P, Limiñana R, Mellone U, Urios V (2010) From the Meditrranean Sea to Madagascar. Are there ecological barriers for the long-distant migrant Eleonora’s falcon? Landscape Ecol 25:803–813CrossRefGoogle Scholar
  98. McNamara JM, Welham RK, Houston AI (1998) The timing of migration within the context of an annual routine. J Avian Biol 29:416–423CrossRefGoogle Scholar
  99. Mellone U, López-López P, Limiñana R, Urios V (in press) Weather conditions promote route flexibility during open ocean crossing in a long-distance migratory raptor. Int J Biometeorol. doi: 10.1007/s00484-010-0368-3
  100. Newton I (2008) The migration ecology of birds. Academic, OxfordGoogle Scholar
  101. Pennycuick CJ (1969) The mechanics of bird migration. Ibis 111:525–556CrossRefGoogle Scholar
  102. Pennycuick CJ (1975) Mecanics of flight. In: Farner DS, King JR (eds) Avian biology, vol 5. Academic, London, pp 1–75Google Scholar
  103. Pennycuick CJ (2008) Modelling the flying bird. Academic, LondonGoogle Scholar
  104. Piersma T, Lindström Å (1997) Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol Evol 12:134–138PubMedCrossRefGoogle Scholar
  105. Piersma T, van Gils JA (2011) The flexible phenotype. Oxford University Press, OxfordGoogle Scholar
  106. Pomeroy AC, Butler RW, Ydenberg RC (2006) Experimental evidence that migrants adjust usage at a stopover site to trade off food and danger. Behav Ecol 17:1041–1045CrossRefGoogle Scholar
  107. Purcell J, Brodin A (2007) Factors influencing route choice by avian migrants: a dynamic programming model of Pacific brant migration. J Theor Biol 249:804–816PubMedCrossRefGoogle Scholar
  108. Rattenborg NC, Mandt BH, Obermeyer WH, Winsauer PJ, Huber R, Wikelski M, Benca RM (2004) Migratory sleeplessness in the white-crowned sparrow. PLoS Biol 2:924–936CrossRefGoogle Scholar
  109. Richardson WJ (1991) Wind and orientation of migrating birds: a review. In: Berthold P (ed) Orientation in birds. Birkhäuser, Basel, pp 226–249Google Scholar
  110. Rubolini D, Gardiazabal Pastor A, Pilastro A, Spina F (2002) Ecological barriers shaping fuel stores in barn swallows Hirundo rustica following the central and western Mediterranean flyways. J Avian Biol 33:15–22CrossRefGoogle Scholar
  111. Rubolini D, Spina F, Saino N (2004) Protandry and sexual dimorphism in trans-Saharan migratory birds. Behav Ecol 15:592–601CrossRefGoogle Scholar
  112. Schaub M, Jenni L, Bairlein F (2008) Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site. Behav Ecol 19:657–666CrossRefGoogle Scholar
  113. Schmaljohann H, Dierschke V (2005) Optimal bird migration and predation risk: a field experiment with northern wheatears Oenanthe oenanthe. J Anim Ecol 74:131–138CrossRefGoogle Scholar
  114. Schmaljohann H, Liechti F (2009) Adjustment of wingbeat frequency and air speed to air density in free-flying migratory birds. J Exp Biol 212:3633–3642PubMedCrossRefGoogle Scholar
  115. Schmaljohann H, Liechti F, Bruderer B (2007) Songbird migration across the Sahara: the non-stop hypothesis rejected!. Proc R Soc Lond B 274:735–739CrossRefGoogle Scholar
  116. Schmaljohann H, Bruderer B, Liechti F (2008) Sustained bird flights occur at temperatures far beyond expected limits. Anim Behav 76:1133–1138CrossRefGoogle Scholar
  117. Schmaljohann H, Liechti F, Bruderer B (2009) Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav Ecol Sociobiol 63:1609–1619CrossRefGoogle Scholar
  118. Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM, Moller H, Taylor GA, Foley DG, Block BA, Costa DP (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proc Natl Acad Sci USA 113:12799–12802CrossRefGoogle Scholar
  119. Shamoun-Baranes J, Leyrer J, van Loon E, Bocher P, Robin F, Meunier F, Piersma T (2010) Stochastic atmospheric assistance and the use of emergency staging sites by migrants. Proc R Soc Lond B 277:1505–1511CrossRefGoogle Scholar
  120. Sillett TS, Holmes RT (2002) Variation is survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol 71:296–308CrossRefGoogle Scholar
  121. Spaar R, Stark H, Liechti F (1998) Migratory flight strategies of Levant sparrowhawks: time or energy minimization? Anim Behav 56:1185–1197PubMedCrossRefGoogle Scholar
  122. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, PrincetonGoogle Scholar
  123. Strandberg R, Alerstam T (2007) The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav Ecol Sociobiol 61:1865–1875CrossRefGoogle Scholar
  124. Strandberg R, Klaassen RHG, Olofsson P, Alerstam T (2009) Daily travel schedules of adult Eurasian hobbies Falco subbuteo—variability in flight hours and migration speed along the route. Ardea 97:287–295CrossRefGoogle Scholar
  125. Thorup K, Alerstam T, Hake M, Kjellén N (2003) Bird orientation: compensation for wind drift in migrating raptors is age dependent. Proc R Soc Lond B (Suppl Biol Lett) 270:S8–S11CrossRefGoogle Scholar
  126. Thorup K, Alerstam T, Hake M, Kjellén N (2006) Traveling or stopping of migrating birds in relation to wind: an illustration for the osprey. Behav Ecol 17:497–502CrossRefGoogle Scholar
  127. Tobalske BW, Hedrick TL, Dial KP, Biewener AA (2003) Comparative power curves in bird flight. Nature 421:363–366PubMedCrossRefGoogle Scholar
  128. Tucker VA (1974) Energetics of natural avian flight. In: Paynter RA (ed) Avian energetics. Publ Nuttall Orn Club no 15, Cambridge, MA, pp 298–328Google Scholar
  129. van Gils JA, Piersma T, Dekinga A, Dietz MW (2003) Cost-benefit analysis of mollusc-eating in a shorebird. II Optimising gizzard size in the face of seasonal demands. J Exp Biol 206:3369–3380PubMedCrossRefGoogle Scholar
  130. van Gils JA, Piersma T, Dekinga A, Battley PF (2006) Modelling phenotypic flexibility: an optimality analysis of gizzard size in red knots Calidris canutus. Ardea 94:409–420Google Scholar
  131. Vrugt JA, van Belle J, Bouten W (2007) Pareto front analysis of flight time and energy use in long-distance migration. J Avian Biol 38:432–442CrossRefGoogle Scholar
  132. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Eclogical responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar
  133. Ward DH, Dau CP, Tibbitts TL, Sedinger JS, Anderson BA, Hines JE (2009) Change in abundance of Pacific brant wintering in Alaska: Evidence of a climate warming effect? Arctic 62:301–311Google Scholar
  134. Weber TP (1999) Blissful ignorance? Departure rules for migrants in spatially heterogeneous environments. J Theor Biol 199:415–424PubMedCrossRefGoogle Scholar
  135. Weber TP, Hedenström A (2000) Optimal stopover decisions under wind influence: the effects of correlated winds. J Theor Biol 205:95–104PubMedCrossRefGoogle Scholar
  136. Weber TP, Hedenström A (2001) Long-distance migrants as a model system of structural and physiological plasticity. Evol Ecol Res 3:255–271Google Scholar
  137. Weber TP, Houston AI, Ens BJ (1994) Optimal departure fat loads and site use in avian migration: an analytical model. Proc R Soc Lond B 258:29–34CrossRefGoogle Scholar
  138. Weber TP, Alerstam T, Hedenström A (1998a) Stopover decisions under wind influence. J Avian Biol 29:552–560CrossRefGoogle Scholar
  139. Weber TP, Ens BJ, Houston AI (1998b) Optimal avian migration: a dynamic model of fuel stores and site use. Evol Ecol 12:377–401CrossRefGoogle Scholar
  140. Weber TP, Fransson T, Houston AI (1999a) Should I stay or should I go? Testing optimality models of stopover decisions in migrating birds. Behav Ecol Sociobiol 46:280–286CrossRefGoogle Scholar
  141. Weber TP, Houston AI, Ens BJ (1999b) The consequences of habitat loss at migratory stopover sites: a theoretical investigation. J Avian Biol 30:416–426CrossRefGoogle Scholar
  142. Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa DP (2000) Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proc R Soc Lond B 267:1869–1874CrossRefGoogle Scholar
  143. Whelan CJ, Schmidt KA (2007) Food acquisition, processing, and digestion. In: Stephens DW, Brown JS, Ydenberg RC (eds) Foraging behavior and ecology. University of Chicago Press, Chicago, pp 141–172Google Scholar
  144. Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704PubMedCrossRefGoogle Scholar
  145. Wiklund C, Fagerström T (1977) Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies. Oecologia 31:153–158CrossRefGoogle Scholar
  146. Ydenberg RC, Butler RW, Lank DB, Smith BD, Ireland J (2004) Western sandpipers have altered migration tactics as peregrine falcon populations have recovered. Proc R Soc Lond B 271:1263–1269CrossRefGoogle Scholar
  147. Ydenberg RC, Brown JS, Stephens DW (2007a) Foraging: an overview. In: Stephens DW, Brown JS, Ydenberg RC (eds) Foraging behavior and ecology. University of Chicago Press, Chicago, pp 1–28Google Scholar
  148. Ydenberg RC, Butler RW, Lank DB (2007b) Effects of predator landscapes on the evolutionary ecology of routing, timing and molt by long-distance migrants. J Avian Biol 38:523–529Google Scholar
  149. Zehnder S, Åkesson S, Liechti F, Bruderer B (2001) Nocturnal autumn bird migration at Falsterbo, South Sweden. J Avian Biol 32:239–248CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  1. 1.Department of BiologyLund UniversityLundSweden

Personalised recommendations