Advertisement

Journal of Ornithology

, Volume 152, Issue 3, pp 807–810 | Cite as

Novel and cross-species microsatellite markers for parentage analysis in Sanderling Calidris alba

  • Pieternella C. Luttikhuizen
  • Anneke Bol
  • Harry Witte
  • Judith van Bleijswijk
  • Oliver Haddrath
  • Allan J. Baker
  • Theunis Piersma
  • Jeroen Reneerkens
Technical Notes

Abstract

We isolated and tested six novel microsatellite loci in Sanderling (Calidris alba) from Greenland for paternity analyses. In addition, we tested 11 already published microsatellite markers which were originally developed for the congeneric species, the Pectoral Sandpiper (C. melanotos). All loci were polymorphic, but five of the cross-species loci were not scorable due to suboptimal amplification patterns. The 12 successful loci were tested on 87 individuals, yielding an average of 9.0 (range 4–19) alleles per locus and mean expected heterozygosity of 0.70. Because this dataset contained families, tests for Hardy–Weinberg equilibrium, linkage disequilibrium and probability of identity were done on a subset of the data containing 25 adults caught in the same year. The overall probability of identity was 1.0 × 10−13. Only one locus displayed significant homozygote excess and all loci were unlinked. On the basis of female heterozygotes, all loci are assumed to be autosomal.

Keywords

Microsatellite markers Parentage analysis Breeding system Population genetics 

Zusammenfassung

Wir isolierten und testeten sechs neue Mikrosatelliten-Loci auf Eignung für Verwandtschaftsanalysen beim grönländischen Sanderling (Calidris alba). Zusätzlich dazu testeten wir 11 bereits publizierte Mikrosatellitenmarker, die ursprünglich für den nahe verwandten Graubruststrandläufer (C. melanotos) entwickelt worden waren. Alle Genorte waren polymorph, aber fünf der artübergreifenden loci konnten wegen ungenügender Vervielfältigungsmuster nicht ausgewertet werden. Die 12 verbliebenen Genorte wurden für 87 Individuen getestet und ergaben einen Durchschnitt von 9,0 Allelen pro Genort (Bereich: 4 -19) sowie eine mittlere zu erwartende Heterozygosität von 0,70. Weil dieses Set Daten von Familien enthielt, wurden für einen Teil des Sets mit Daten von fünf adulten, im gleichen Jahr gefangenen Vögeln auch statistische Tests für das Hardy–Weinberg-Äquilibrium, das Kopplungs-Ungleichgewicht, und die Identitäts-Wahrscheinlichkeit durchgeführt. Insgesamt betrug die Identitäts-Wahrscheinlichkeit 1,0*10-13. Nur ein einziger locus zeigte einen signifikanten Homozygoten-Überschuß, und alle loci waren ungekoppelt. Aufgrund der weiblichen Heterozygoten wurde angenommen, dass alle loci autosomal waren.

Notes

Acknowledgments

The Netherlands Arctic Programme, administered by the Netherlands Organisation for Scientific Research (NWO) supported our work financially in Greenland. We are grateful to the Danish Polar Center for providing logistics at the research station at Zackenberg and to Petra de Goeij, Joop Jukema and Welmoed Ekster for assisting in the field work in Zackenberg.

References

  1. Breiehagen T (1989) Nesting biology and mating system in an alpine population of Temminck’s stint Calidris temminckii. Ibis 131:389–402CrossRefGoogle Scholar
  2. Carter KL, Kempenaers B (2007) Eleven polymorphic microsatellite markers for paternity analysis in the pectoral sandpiper, Calidris melanotos. Mol Ecol Notes 7:658–660CrossRefGoogle Scholar
  3. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  4. Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  5. Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–504PubMedGoogle Scholar
  6. Hildén O (1975) Breeding system of Temminck’s stint Calidris temminckii. Ornis Fenn 52:117–146Google Scholar
  7. Hildén O (1988) Zur Brutbiologie des Zwergstrandlaufers, Calidris minuta, in Finnmark. Vogelk Tagebuch Schleswig-Holstein 16:245–265Google Scholar
  8. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106PubMedCrossRefGoogle Scholar
  9. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefing Bioinform 5:150–163CrossRefGoogle Scholar
  10. Parmelee DF (1970) Breeding behavior of the sanderling in the Canadian High Arctic. Living Bird 9:97–146Google Scholar
  11. Parmelee DF, Payne RB (1973) On multiple broods and the breeding strategy of arctic sanderlings. Ibis 115:218–226CrossRefGoogle Scholar
  12. Pienkowski MW, Green GH (1976) Breeding biology of sanderlings in north-east Greenland. Br Birds 60:165–177Google Scholar
  13. Reneerkens J, Grond K (2009) Return rates, mate fidelity and territory size of sanderlings Calidris alba in Zackenberg. In: Jensen LM, Rasch M (eds) 2009: Zackenberg Ecological Research Operations, 14th Annual Report, 2008. National Environmental Research Institute, Aarhus University, Denmark. 116 pp. Available online: http://www2.dmu.dk/pub/ZERO_09.pdf
  14. Reneerkens J, Benhoussa A, Boland H, Collier M, Grond K, Günther K, Hallgrimsson GT, Hansen J, Meissner W, de Meulenaer B, Ntiamoa-Baidu Y, Piersma T, Poot M, van Roomen M, Summers RW, Tomkovich PS, Underhill LG (2009) Sanderlings using African–Eurasian flyways: a review of current knowledge. Wader Study Group Bull 116:2–20Google Scholar
  15. Reneerkens J, Grond K, Schekkerman H, Tulp I, Piersma T (2011) Do uniparental Sanderlings Calidris alba increase egg heat input to compensate for low nest attentiveness? PLoS One 6:e16834Google Scholar
  16. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  17. Tomkovich PS, Soloviev MY (2001) Social organisation of sanderlings breeding at northern Taimyr, Siberia. Ornithologia 29:125–136Google Scholar
  18. Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  19. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  20. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Pieternella C. Luttikhuizen
    • 1
  • Anneke Bol
    • 1
  • Harry Witte
    • 1
  • Judith van Bleijswijk
    • 1
  • Oliver Haddrath
    • 2
  • Allan J. Baker
    • 2
  • Theunis Piersma
    • 1
    • 3
  • Jeroen Reneerkens
    • 3
  1. 1.Royal Netherlands Institute for Sea Research (NIOZ)TexelThe Netherlands
  2. 2.Department of Natural HistoryRoyal Ontario MuseumTorontoCanada
  3. 3.Centre for Ecological and Evolutionary Studies (CEES), Animal Ecology GroupUniversity of GroningenGroningenThe Netherlands

Personalised recommendations