Journal of Ornithology

, Volume 152, Issue 4, pp 879–888

Integrating effects of supplementary feeding, poisoning, pollutant ingestion and wind farms of two vulture species in Spain using a population viability analysis

Original Article

Abstract

Population viability analyses (PVAs) are a useful technique in risk-assessment studies aimed at determining which demographic parameters are most influential in population persistence. Here, we incorporate demographic and environmental stochasticity in the construction of individual-based models integrating the effects of different scenarios in a PVA of the Eurasian Griffon Vulture (Gyps fulvus) and the endangered Egyptian Vulture (Neophron percnopterus) in Spain. Scenarios were based on reasonable options of population management, including effects of supplementary feeding (decreasing mortality and increasing fecundity), extensive wind farm development (increasing mortality), and catastrophic events such as poisoning (decreasing fecundity and survival) or pollutant ingestion (decreasing fecundity but no effect on survival). Our results show that those measures affecting survival show higher negative effects on population growth rate than those affecting fecundity. The outcomes were different and highly depend on the initial conditions and the species considered, with stronger negative effects on Egyptian Vulture populations. For both species, under similar conditions, the effects of massive poisoning, even occurring at low time frequency, had stronger negative consequences in population trends than the pollutant accumulation, or other actions affecting survival, such as installation of wind farms. Measures aimed at improving survival and fecundity such as supplementary feeding at vulture restaurants give rise to positive population trends. The establishment of management actions aimed at improving the birds’ survival and increasing breeding success will probably boost the scavengers’ populations into an upward trend, which is particularly important in the case of the endangered Egyptian Vulture.

Keywords

Elasticity analysis Gyps fulvus Neophron percnopterus PVA Vortex software 

Zusammenfassung

Population Viability Analysis (PVA) ist eine nützliche Methode in Risikobewertungsstudien, die darauf abzielt, zu ermitteln, welche demographischen Parameter für das Fortbestehen von Populationen am einflussreichsten sind. Hier berücksichtigen wir demographische Stochastizität und Umweltstochastizität bei der Konstruktion individuenbasierter Modelle, welche die Effekte verschiedener Szenarien in eine PVA für den Gänsegeier (Gyps fulvus) und den stark gefährdeten Schmutzgeier (Neophron percnopterus) in Spanien integrieren. Die Szenarien beruhen auf angemessenen Optionen von Populationsmanagement, welche die Effekte von Zufüttern (erniedrigt die Mortalität und erhöht die Fruchtbarkeit), großflächigem Bau von Windenergieparks (erhöht die Mortalität) und katastrophalen Ereignissen wie Vergiftung (erniedrigt die Fruchtbarkeit und das Überleben) oder Schadstoffaufnahme (erniedrigt die Fruchtbarkeit, aber hat keinen Effekt auf das Überleben) einschließen. Unsere Ergebnisse zeigen, dass diejenigen Maße, die das Überleben beeinflussen, stärkere negative Effekte auf die Wachstumsrate der Population haben als die, welche die Fruchtbarkeit beeinflussen. Die Folgen waren unterschiedlich und hängen stark von den anfänglichen Bedingungen und der betrachteten Art ab, wobei die negativen Effekte auf die Schmutzgeierpopulationen stärker waren. Für beide Arten hatten unter ähnlichen Bedingungen die Effekte schwerer Vergiftung stärkere negative Folgen für die Populationsentwicklung als die Anreicherung von Schadstoffen oder andere Maßnahmen, die das Überleben betrafen, wie die Errichtung von Windenergieparks, und das obwohl Vergiftungen selten auftraten. Maßnahmen, die darauf abzielen, das Überleben und die Fruchtbarkeit zu verbessern, wie das Zufüttern in „Geierrestaurants”, führen zu positiven Populationsentwicklungen. Die Etablierung von Managementmaßnahmen, die anstreben, das Überleben und den Bruterfolg der Vögel zu verbessern, wird die positive Populationsentwicklung dieser Aasfresser wahrscheinlich fördern, was besonders im Falle des stark gefährdeten Schmutzgeiers wichtig ist.

Supplementary material

10336_2011_671_MOESM1_ESM.doc (316 kb)
Supplementary material 1 (DOC 315 kb)

References

  1. Akçakaya HR, Sjögren-Gulve P (2000) Population viability analysis in conservation planning: an overview. Ecol Bull 48:9–21Google Scholar
  2. Arroyo B, Ferreiro E, Garza V (1990) II censo nacional de Buitre leonado (Gyps fulvus). Población, distribución, demografía y conservación. Colección técnica. Publicaciones del Instituto Nacional para la Conservación de la Naturaleza ICONA. Madrid, Spain. (in Spanish)Google Scholar
  3. Barrios L, Rodríguez A (2004) Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J Appl Ecol 41:72–81CrossRefGoogle Scholar
  4. Beissinger SR, McCullough DR (2002) Population viability analysis. University of Chicago Press, ChicagoGoogle Scholar
  5. BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife Conservation Series, no 12. BirdLife International, CambridgeGoogle Scholar
  6. BirdLife International (2008) Species factsheet: Neophron percnopterus. Downloaded from http://www.birdlife.org on 9/8/2008
  7. Camiña A, Montelío E (2006) Griffon vulture Gyps fulvus food shortages in the Ebro Valley (NE Spain) caused by regulations against bovine spongiform encephalopathy (BSE). Acta Ornithol 41:7–13Google Scholar
  8. Carrete M, Donázar JA, Margalida A (2006) Density-dependent productivity depression in Pyrenean bearded vultures: implications for conservation. Ecol Appl 16:1674–1682PubMedCrossRefGoogle Scholar
  9. Carrete M, Sánchez-Zapata JA, Benítez JR, Lobón M, Donázar JA (2009) Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol Conserv 142:2954–2961CrossRefGoogle Scholar
  10. Caswell H (2001) Matrix population models: construction, analysis and interpretation, 2nd edn. Sinauer, Sunderland, Mass.Google Scholar
  11. Cortés-Avizanda A, Selva N, Carrete M, Donázar JA (2009) Effects of carrion resources on herbivore spatial distribution are mediated by facultative scavengers. Basic Appl Ecol 10:265–272CrossRefGoogle Scholar
  12. De Lucas M, Janss GFE, Ferrer M (2007) Birds and wind farms. Risk assessment and mitigation. Quercus, MadridGoogle Scholar
  13. Del Moral JC (2009a) El buitre leonado en España. Población reproductora en 2008 y método de censo. Monografía no 30. SEO/BirdLife, Madrid (in Spanish)Google Scholar
  14. Del Moral JC (2009b) El alimoche común en España. Población reproductora en 2008 y método de censo. Monografía no 31. SEO/BirdLife, Madrid (in Spanish)Google Scholar
  15. Del Moral JC, Martí R (2001) El buitre leonado en la Península Ibérica. III Censo Nacional y I Censo Ibérico coordinado, 1999. Monografía no 7. SEO/Birdlife, Madrid (in Spanish)Google Scholar
  16. Del Moral JC, Martí R (2002) El Alimoche Común en España y Portugal. I Censo Coordinado. Año 2000. Monografía no 8. SEO/Birdlife, Madrid (in Spanish)Google Scholar
  17. Deygout C, Gault A, Sarrazin F, Bessa-Gomes C (2009) Modeling the impact of feeding stations on vulture scavenging service efficiency. Ecol Model 220:1826–1835. doi:10.1016/j.ecolmodel.2009.04.030 CrossRefGoogle Scholar
  18. Donázar JA, Margalida A, Campión D (eds) (2009) Vultures, feeding stations and sanitary legislation: a conflict and its consequences from the perspective of conservation biology. Munibe 29 (Suppl.). Sociedad de Ciencias Aranzadi, San Sebastián, SpainGoogle Scholar
  19. Drewitt AL, Langston RHW (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42. doi:10.1111/j.1474-919X.2006.00516.x CrossRefGoogle Scholar
  20. Duca C, Yokomizo H, Marini MA, Possingham HP (2009) Cost-efficient conservation for the white-banded tanager (Neothraupis fasciata) in the Cerrado, central Brazil. Biol Conserv 142:563–574. doi:10.1016/j.biocon.2008.11.010 CrossRefGoogle Scholar
  21. Farfán MA, Vargas JM, Duarte J, Real R (2009) What is the impact of wind farms on birds? A case study in southern Spain. Biodivers Conserv 18:3743–3758. doi:10.1007/s10531-009-9677-4 CrossRefGoogle Scholar
  22. Ferguson-Lees J, Christie DA (2001) Raptors: birds of prey of the world. Black, LondonGoogle Scholar
  23. Fernández C, Azkona P, Donázar JA (1998) Density dependent effects on productivity in the griffon vulture Gyps fulvus: the role of interference and habitat heterogeneity. Ibis 140:64–69CrossRefGoogle Scholar
  24. Ferrer M, Newton I, Casado E (2006) How to test different density-dependent fecundity hypotheses in an increasing or stable population. J Anim Ecol 75:111–117PubMedCrossRefGoogle Scholar
  25. Ferrer M, Newton I, Pandolfi M (2009) Small populations and offspring sex-ratio deviations in eagles. Conserv Biol 23:1017–1025. doi:10.1111/j.1523-1739.2009.01215.x PubMedCrossRefGoogle Scholar
  26. Gangoso L, Álvarez-Lloret P, Rodríguez-Navarro AAB, Mateo R, Hiraldo F, Donázar JA (2009) Long-term effects of lead poisoning on bone mineralization in vultures exposed to ammunition sources. Environ Pollut 157:569–574. doi:10.1016/j.envpol.2008.09.015 PubMedCrossRefGoogle Scholar
  27. García-Ripollés C, López-López P, Urios V (2010) First description of migration and wintering of adult Egyptian vultures Neophron percnopterus tracked by GPS satellite telemetry. Bird Study 57:261–265. doi:10.1080/00063650903505762 CrossRefGoogle Scholar
  28. González LM, Margalida A, Sánchez R, Oria J (2006) Supplementary feeding as an effective tool for improving breeding success in the Spanish imperial eagle (Aquila adalberti). Biol Conserv 129:477–486CrossRefGoogle Scholar
  29. Grande JM (2006) Factores Limitantes Antrópicos y Naturales de Poblaciones de Aves Carroñeras: El Caso del Alimoche (Neophron percnopterus) en el Valle del Ebro. PhD dissertation. University of Sevilla, Spain (in Spanish)Google Scholar
  30. Grande JM, Serrano D, Tavecchia G, Carrete M, Ceballos O, Díaz-Delgado R, Tella JL, Donázar JA (2009) Survival in a long-lived territorial migrant: effects of life-history traits and ecological conditions in wintering and breeding areas. Oikos 118:580–590Google Scholar
  31. Green RE, Newton I, Shultz S, Cunningham AA, Gilbert M, Pain DJ, Prakash V (2004) Diclofenac poisoning as a cause of vulture population declines across the Indian subcontinent. J Appl Ecol 41:793–800CrossRefGoogle Scholar
  32. Green RE, Taggart MA, Das D, Pain DJ, Kumar CS, Cunningham AA, Cuthbert R (2006) Collapse of Asian vulture populations: risk of mortality from residues of the veterinary drug diclofenac in carcasses of treated cattle. J Appl Ecol 43:949–956CrossRefGoogle Scholar
  33. Harris RB, Maguire LA, Shaffer ML (1987) Sample sizes for minimum viable population estimation. Conserv Biol 1:72–76CrossRefGoogle Scholar
  34. Hernández M, Margalida A (2009) Poison-related mortality effects in the endangered Egyptian vulture (Neophron percnopterus) population in Spain. Eur J Wildl Res 55:415–423. doi:10.1007/s10344-009-0255-6 CrossRefGoogle Scholar
  35. Hollander M, Wolfe DA (1999) Nonparametric statistical methods. Wiley, HobokenGoogle Scholar
  36. Lacy RC (1993) VORTEX: a computer simulation model for population viability analysis. Wildl Res 20:45–65CrossRefGoogle Scholar
  37. Lacy RC (2000) Structure of the VORTEX simulation model for population viability analysis. Ecol Bull 48:191–203Google Scholar
  38. Langston RHW, Pullan JD (2003) Windfarms and birds: an analysis of the effects of wind farms on birds, and guidance on environmental assessment criteria and site selection issues. RSPB/Birdlife International Report, Strasbourg, FranceGoogle Scholar
  39. Le Gouar P, Robert A, Choisy J-P, Henriquet S, Lecuyer P, Tessier C, Sarrazin F (2008) Roles of survival and dispersal in reintroduction success of griffon vulture (Gyps fulvus). Ecol Appl 18:859–872PubMedCrossRefGoogle Scholar
  40. Lemus JA, Blanco G, Grande J, Arroyo B, García-Montijano M (2008) Antibiotics threaten wildlife: circulating quinolone residues and disease in avian scavengers. PLoS ONE 3:e1444. doi:10.1371/journal.pone.0001444 PubMedCrossRefGoogle Scholar
  41. Lemus JA, Blanco G, Arroyo B, Martínez F, Grande J (2009) Fatal embryo chondral damage associated with fluoroquinolones in eggs of threatened avian scavengers. Environ Pollut 157:2421–2427. doi:10.1016/j.envpol.2009.03.013 PubMedCrossRefGoogle Scholar
  42. Margalida A, Donázar JA, Carrete M, Sánchez-Zapata JA (2010) Sanitary versus environmental policies: fitting together two pieces of the puzzle of European vulture conservation. J Appl Ecol 47:931–935. doi:10.1111/j.1365-2664.2010.01835.x CrossRefGoogle Scholar
  43. Meretsky VJ, Mannan RW (1999) Supplemental feeding regimes for Egyptian vultures in the Negev Desert, Israel. J Wild Manag 63:107–115CrossRefGoogle Scholar
  44. Miller PS, Lacy RC (2005) VORTEX: a stochastic simulation of the extinction process. Version 9.50 user’s manual. Apple Valley, MN: Conservation Breeding Specialist Group, USAGoogle Scholar
  45. Naujokaitis-Lewis IR, Curtis JMR, Arcese P, Rosenfeld J (2008) Sensitivity analyses of spatial population viability analysis models for species at risk and habitat conservation planning. Conserv Biol 23:225–229. doi:10.1111/j.1523-1739.2008.01066.x PubMedCrossRefGoogle Scholar
  46. Newton I (1998) Population limitations in birds. Academic, LondonGoogle Scholar
  47. Nilsson J (2003) Integrating effects of hunting policy, catastrophic events, and inbreeding depression, in PVA simulation: the Scandinavian wolf population as an example. Biol Conserv 115:227–239. doi:10.1016/S0006-3207(03)00120-4 CrossRefGoogle Scholar
  48. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJI, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633PubMedCrossRefGoogle Scholar
  49. Oro D, Margalida A, Carrete M, Heredia R, Donázar JA (2008) Testing the goodness of supplementary feeding to enhance population viability in an endangered vulture. PLoS ONE 3:e4084. doi:10.1371/journal.pone.0004084 PubMedCrossRefGoogle Scholar
  50. Parra J, Tellaría JL (2004) The increase in the Spanish population of griffon vulture Gyps fulvus during 1989–1999: effects of food and nest site availability. Bird Conserv Int 14:33–41CrossRefGoogle Scholar
  51. Pavokovic G, Susic G (2006) Population viability analysis of (Eurasian) griffon vulture Gyps fulvus in Croatia. In: Houston DC, Piper SE (eds) Proceedings of the international conference on conservation and management of vulture populations. 14–16 November 2005, Thessaloniki, GreeceGoogle Scholar
  52. Perea JL, Morales M, Velasco J (1990) El alimoche (Neophron percnopterus) en España. Población, distribución, problemática y conservación. ICONA, Madrid (in Spanish)Google Scholar
  53. Robb GN, McDonald RA, Chamberlain DE, Bearhop S (2008) Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front Ecol Environ 6:476–484. doi:10.1890/060152 CrossRefGoogle Scholar
  54. Sánchez-Zapata JA, Donázar JA, Carrete M, Margalida A, Selva N, Tella JL, Blanco G, Lemus JA, Blázquez M, Cortés-Avizanda A, Hiraldo F (2008) ¿Ecosistemas asépticos? Muladares y conservación de la biodiversidad. Quercus 268:80–82 (in Spanish)Google Scholar
  55. Sarrazin F, Legendre S (2000) Demographic approach to releasing adults versus young in reintroductions. Conserv Biol 14:488–500CrossRefGoogle Scholar
  56. Sarrazin F, Bagnolini C, Pinna JL, Danchin E, Clobert J (1994) High survival estimates of griffon vultures (Gyps fulvus fulvus) in a reintroduced population. Auk 111:853–862Google Scholar
  57. Soutullo A, López-López P, Urios V (2008) Incorporating spatial structure and stochasticity in endangered Bonelli’s eagle’s population models: implications for conservation and management. Biol Conserv 141:1013–1020. doi:10.1016/j.biocon.2008.01.011 CrossRefGoogle Scholar
  58. StatSoft (2004) STATISTICA (data analysis software system), version 7. http://www.statsoft.com
  59. Stewart GB, Pullin AS, Coles CF (2007) Poor evidence-base for assessment of wind farm impacts on birds. Environ Conserv 34:1–11CrossRefGoogle Scholar
  60. Tellería JL (2009a) Wind power plants and the conservation of birds and bats in Spain: a geographical assessment. Biodivers Conserv 18:1781–1791. doi:10.1007/s10531-008-9558-2 CrossRefGoogle Scholar
  61. Tellería JL (2009b) Potential impacts of wind farms on migratory birds crossing Spain. Bird Conserv Int 19:131–136. doi:10.1017/S0959270908008137 CrossRefGoogle Scholar
  62. Tellería JL (2009c) Overlap between wind power plants and griffon vultures Gyps fulvus in Spain. Bird Study 56:268–271. doi:10.1080/00063650902792056 CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Clara García-Ripollés
    • 1
  • Pascual López-López
    • 1
    • 2
  1. 1.Vertebrate Zoology Research Group, CIBIOUniversity of AlicanteAlicanteSpain
  2. 2.Cavanilles Institute of Biodiversity and Evolutionary Biology, Terrestrial Vertebrates GroupUniversity of ValenciaPaterna, ValenciaSpain

Personalised recommendations