Journal of Ornithology

, Volume 152, Issue 3, pp 801–806 | Cite as

Variation in baseline corticosterone levels of Tree Sparrow (Passer montanus) populations along an urban gradient in Beijing, China

  • Shuping Zhang
  • Fumin Lei
  • Shenglin Liu
  • Dongming Li
  • Cong Chen
  • Peizhe Wang
Original Article

Abstract

Rapid urbanization is a major anthropogenic pressure on bird species that rely on vegetation for food and shelter. Since the baseline corticosterone concentration (BCC) in some bird species has been found to increase slightly in response to environmental challenges, we hypothesized that urbanization could also induce an increase in BCC. To test this hypothesis, we compared the BCC of Tree Sparrow (Passer montanus) populations in five urban and two rural habitats and analyzed the relationship between BCC and the degree of urbanization. Here, we show that the BCCs of Tree Sparrow populations were strongly and positively correlated with the degree of urbanization of the habitat. Average BCC of Tree Sparrows from high-rise residential areas and a university campus were significantly higher than those from rural areas, suggesting that Tree Sparrows living in highly urbanized areas have greater environmental challenges than those in rural areas. However, the average BCC of birds from an urban park was not significantly different to that of birds at rural sites and also differed significantly from that of birds at two of the other urban sites. These results suggest that urbanization could pose environmental challenges for Tree Sparrows, a species that appears relatively well-adapted to human-modified environments. The marked variation in BCC between different urban sites indicates that conclusions drawn from data collected at single sites must be interpreted with caution.

Keywords

Urbanization Tree Sparrow Baseline corticosterone Variation 

Zusammenfassung

Eine rasante Urbanisierung kann einen massiven anthropogenen Druck auf Vogelarten ausüben, die auf Vegetation für Nahrung und Schutz angewiesen sind. Da in einigen Arten ein erhöhter Corticosteronspiegel als Reaktion auf selbst geringe Umweltveränderungen gefunden wurde, stellen wir die Hypothese auf, dass Urbanisation zu einer Erhöhung des Hormonspiegels führen kann. Um dies zu testen, haben wir Feldsperlingspopulationen (Passer montanus) fünf urbaner und zwei ländlicher Lebensräume verglichen und das Verhältnis zwischen dem basalen Corticosteronespiegel (BCC) und dem Grad der Verstädterung analysiert. Wir zeigen hier, dass der BCC in Feldsperlingen positiv mit dem Grad der Verstädterung des jeweiligen Lebensraumes assoziiert war. Durchschnittliche BCC von Feldsperlingen aus Hochhauswohngebieten und von einem Universitätscampus waren signifikant höher als die von Feldsperlingen aus ländlichen Gebieten. Dies deutet darauf hin, dass Feldsperlinge in stark urbanisierten Gebieten stärkeren Umwelteinflüssen ausgesetzt sind als solche aus ländlicheren Gegenden. Der BCC von Vögeln aus einem städtischen Park war signifikant höher als der BBC von Vögeln vom Lande; er war jedoch signifikant geringer als der von Vögeln von zwei anderen städtischen Umgebungen. Diese Ergebnisse legen nahe, dass Urbanisierung ökologische Herausforderungen darstellt, und das selbst in einer Art, die anscheinend relativ gut an anthropogen veränderte Umgebungen angepasst ist. Die auffällige Variation in BCC zwischen verschiedenen städtischen Lebensräumen zeigt, dass Schlussfolgerungen aus Daten einzelner Standorte nur mit Vorsicht interpretiert werden sollten.

Notes

Acknowledgment

We are supported by National Nature Foundation of China (30900181), 111 project (2008-B0844) and NMOE (200812001).

References

  1. Angelier F, Shaffer SA, Weimerskirch H, Trouve C, Chastel O (2007) Corticosterone and foraging behavior in a pelagic seabird. Physiol Biochem Zool 80:283–292PubMedCrossRefGoogle Scholar
  2. Astheimer LB, Buttemer WA, Wingfield JC (1992) Interactions of corticosterone with feeding, activity and metabolism in passerine birds. Ornis Scand 23:355–365CrossRefGoogle Scholar
  3. Baker PJ, Bentley AJ, Ansell RJ, Harris S (2005) Impact of predation by domestic cats Felis catus in an urban area. Mammal Rev 35:302–312CrossRefGoogle Scholar
  4. Bautista LM, Garcia JT, Calmaestra RG, Palacin C, Martin CA, Morales MB, Bonal R, Vinuela J (2004) Effect of weekend road traffic on the use of space by raptors. Conserv Biol 18:726–732CrossRefGoogle Scholar
  5. Bokony V, Adam Lendvai ZL, Liker A, Angelier F, Wingfield JC, Chastel O (2009) Stress response and the value of reproduction: are birds prudent parents? Am Nat 173:589–598PubMedCrossRefGoogle Scholar
  6. Bonier F, Martin PR, Sheldon KS, Jensen JP, Foltz SL, Wingfield JC (2007) Sex-specific consequences of life in the city. Behav Ecol 18:121–129CrossRefGoogle Scholar
  7. Bonier F, Martin PR, Moore IT, Wingfield JC (2009) Do baseline glucocorticoids predict fitness? Trends Ecol Evol 24:634–642PubMedCrossRefGoogle Scholar
  8. Brown CR, Brown MB, Raouf SR, Smith LC (2005) Effects of endogenous steroid hormone levels on annual survival in cliff swallow. Ecology 86:1034–1046CrossRefGoogle Scholar
  9. Chamberlain DE, Toms MP, Cleary-McHarg R, Banks AN (2007) House sparrow (Passer domesticus) habitat use in urbanized landscapes. J Ornithol 148:453–462CrossRefGoogle Scholar
  10. Clergeau P, Croci S, Jokimäki J, Kaisanlahti-Jokimäki M, Dinetti M (2006) Avifauna homogenisation by urbanisation: analysis at different European latitudes. Biol Conserv 127:336–344CrossRefGoogle Scholar
  11. Fokidis HB, Orchinik M, Deviche P (2009) Corticosterone and corticosteroid binding globulin in birds: relation to urbanization in a desert city. Gen Comp Endocr 160:259–270PubMedCrossRefGoogle Scholar
  12. Gray JM, Yarian D, Ramenofsky M (1990) Corticosterone, foraging behavior, and metabolism in dark-eyed juncos, Junco hyemalis. Gen Comp Endocr 79:375–384PubMedCrossRefGoogle Scholar
  13. Griffiths R, Daan S, Dijkstra C (1996) Sex identification in birds using two CHD genes. Proc R Soc Lond B 263:1251–1256CrossRefGoogle Scholar
  14. Homan RN, Regosin JV, Rodrigues DM, Reed JM, Windmiller BS, Romero LM (2003) Impacts of varying habitat quality on the physiological stress of spotted salamanders (Ambystoma maculatum). Anim Conserv 6:11–18CrossRefGoogle Scholar
  15. Kitaysky AS, Piatt JF, Wingfield JC (1999) Dynamics of food availability, body condition and physiological stress response in breeding black-legged kittiwakes. Funct Ecol 13:577–584CrossRefGoogle Scholar
  16. Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocr 148:132–149PubMedCrossRefGoogle Scholar
  17. Liker Z, Papp Z, Bókony V, Lendvai ÁZ (2008) Lean birds in the city: body size and condition of housesparrows along the urbanization gradient. J Anim Ecol 77:789–795PubMedCrossRefGoogle Scholar
  18. Lynn SE, Breuner CW, Wingfield JC (2003) Short-term fasting affects locomotor activity, corticosterone, and corticosterone binding globulin in a migratory songbird. Horm Behav 43:150–157PubMedCrossRefGoogle Scholar
  19. Marra PP, Holberton RL (1998) Corticosterone levels as indicators of habitat quality: effects of habitat segregation in a migratory bird during the non-breeding season. Oecologia 116:284–292CrossRefGoogle Scholar
  20. Marzluff JM (2001) Worldwide urbanization and its effects on birds. In: Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology and conservation in an urbanizing world. Kluwer, Dordrecht, pp 19–47CrossRefGoogle Scholar
  21. Morneau F, Décarie R, Pelletier R, Lambert D, DesGranges JL, Savard JP (1999) Changes in breeding bird richness and abundance in Montreal parks over a period of 15 years. Landsc Urban Plan 44:111–121CrossRefGoogle Scholar
  22. Park CR, Lee WS (2000) Relationship between species composition and area in breeding birds of urban woods in Seoul, Korea. Landsc Urban Plan 51:29–36CrossRefGoogle Scholar
  23. Partecke J, Van’t Hof T, Gwinner E (2004) Differences in the timing of reproduction between urban and forest European blackbirds (Turdus merula): result of phenotypic flexibility or genetic differences? Proc R Soc Lond B 271:1995–2001CrossRefGoogle Scholar
  24. Partecke J, Schwabl I, Gwinner E (2006) Stress and the city: urbanization and its effects on the stress physiology in European blackbirds. Ecology 87:1945–1952PubMedCrossRefGoogle Scholar
  25. Porter EE, Forschner BR, Blair RB (2001) Woody vegetation and canopy fragmentation along a forest-to-urban gradient. Urban Ecosyst 5:131–151CrossRefGoogle Scholar
  26. Ricklefs R, Wikelski M (2002) The physiology life history nexus. Trends Ecol Evol 17:462–468CrossRefGoogle Scholar
  27. Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255PubMedCrossRefGoogle Scholar
  28. Romero LM, Wikelski M (2001) Corticosterone levels predict survival probabilities of Gala′ pagos marine iguanas during El Nino events. Proc Natl Acad Sci USA 98:7366–7370PubMedCrossRefGoogle Scholar
  29. Ruan XD, Zheng GM (1991) Breeding ecology of the tree sparrow (Passer montanus) in Beijing. In: Pinowski J, Kavanagh BP, Gorski W (eds) Nestling mortality of granivorous birds due to microorganisms and toxic substances. PWN, Warsaw, pp 151–163Google Scholar
  30. Ruiz G, Rosenmann M, Novoa FF, Sabat P (2002) Hematological parameters and stress index in rufous-collared sparrows dwelling in urban environments. Condor 104:162–166CrossRefGoogle Scholar
  31. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticosteroids influence stress responses? Integrating permissive, suppressive, stimulatory and preparative actions. Endocr Rev 21:55–89PubMedCrossRefGoogle Scholar
  32. Schoech SJ, Bowman R, Reynolds SJ (2004) Food supplementation and possible mechanisms underlying early breeding in the Florida scrub-jay (Aphelocoma coerulescens). Horm Behav 46:565–573PubMedCrossRefGoogle Scholar
  33. Shaw LM, Chamberlain D, Evans M (2008) The house sparrow Passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. J Ornithol 149:293–299CrossRefGoogle Scholar
  34. Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191PubMedCrossRefGoogle Scholar
  35. Slabbekoorn H, Peet M (2003) Ecology: birds sing at a higher pitch in urban noise great tits hit the high notes to ensure that their mating calls are heard above the city’s din. Nature 424:267PubMedCrossRefGoogle Scholar
  36. Vincent KE (2005) Investigating the causes of the decline of the urban house sparrow Passer domesticus population in Britain. PhD thesis, De Montfort University, LeicesterGoogle Scholar
  37. Wada H, Hahn TP, Breuner CW (2007) Development of stress reactivity in white-crowned sparrow nestlings: total corticosterone response increases with age, while free corticosterone response remains low. Gen Comp Endocr 150:405–413PubMedCrossRefGoogle Scholar
  38. Zhang SP, Zheng GM, Xu JL (2008) Habitat use of urban tree sparrows in the process of urbanization. Front Biol China 3:122–128Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Shuping Zhang
    • 1
  • Fumin Lei
    • 2
  • Shenglin Liu
    • 1
  • Dongming Li
    • 3
  • Cong Chen
    • 1
  • Peizhe Wang
    • 1
  1. 1.Life and Environment Science CollegeMinzu University of ChinaBeijingChina
  2. 2.Institute of Zoology, Chinese Academy of ScienceBeijingChina
  3. 3.Life Science CollegeHebei Normal UniversityShijiazhuangChina

Personalised recommendations