Journal of Ornithology

, Volume 152, Issue 3, pp 759–768 | Cite as

Do leucocyte profiles reflect temporal and sexual variation in body condition over the breeding cycle in Southern Rockhopper Penguins?

  • Nina Dehnhard
  • Maud Poisbleau
  • Laurent Demongin
  • Petra Quillfeldt
Original Article


Southern Rockhopper Penguins (Eudyptes chrysocome chrysocome) have a strongly synchronised breeding cycle with a fixed pattern of nest attendance for males and females. We studied leucocyte profiles and the development of granulocyte/lymphocyte (G/L) ratios as an indicator of stress. Variation in G/L ratios were related to sex and breeding stage, but not individual body condition. G/L ratios were similar for males and females during the first part of the incubation period (“shared incubation”, when males and females both attend the nest), but in the second part of the incubation (“single incubation”, only one adult attends the nest), females had significantly higher G/L ratios and a lower body condition than males. The lowest G/L ratios were recorded during the crèche of the chicks at the end of the breeding season. Our results show that G/L ratios in breeding Southern Rockhopper Penguins on the population-scale reflect the temporally and sexually different timing of fasting and refeeding related to the breeding cycle. However, this measurement was not sensitive enough to reveal an effect of body condition on G/L ratios on an individual scale.


Southern Rockhopper Penguin Breeding biology Immunology G/L ratios Body condition Stress 


Südliche Felsenpinguine (Eudyptes chrysocome chrysocome) haben einen stark synchronisierten Brutzyklus. Während der Inkubation und Kükenaufzucht wechseln sich Männchen und Weibchen am Nest in einem festgelegten Muster ab. Wir untersuchten Leukozyten-Profile und die Entwicklung des Granulocyten/Lymphozyten (G/L) Verhältnisses als Indikator von Stress. Das G/L Verhältnis war abhängig von Geschlecht und Brutphase (Inkubation, Kükenaufzucht), aber nicht individueller Körperkondition. Männchen und Weibchen hatten ähnliche G/L Verhältnisse in der ersten Phase der Inkubation (“gemeinsame Inkubation”, wenn Männchen und Weibchen gemeinsam das Nest bewachen und die Eier bebrüten). Weibchen hatten signifikant höhere G/L Verhältnisse und geringere Körperkondition als Männchen in der zweiten Phase der Inkubation (“einzelne Inkubation”, nur ein Elternteil bleibt am Nest). Wir fanden die niedrigsten G/L Verhältnisse während der Crèche (Küken bleiben tagsüber allein und formen kleine Gruppen, sog. Crèches) am Ende des Brutzyklus. Unsere Ergebnisse zeigen, dass das G/L Verhältnis das zeitliche Muster von Fasten und Gewichtszunahme während des Brutzyklus für Männchen und Weibchen des südlichen Felsenpinguins auf Populationsebene gut widerspiegelt. Auf individueller Ebene war diese Methode jedoch nicht subtil genug um einen Effekt von Körperkondition auf das G/L Verhältnis nachzuweisen.


  1. Coles BH (1997) Avian medicine and surgery. Blackwell Science, OxfordGoogle Scholar
  2. Davis LS (1982) Timing of nest relief and its effect on breeding success in Adelie penguins (Pygoscelis adeliae). Condor 84:178–183CrossRefGoogle Scholar
  3. Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772CrossRefGoogle Scholar
  4. Fudge AM (1989) Avian hematology: identification and interpretation. Proc Assoc Avian Vet Annu Meet 1989:284–292Google Scholar
  5. Gross WB, Siegel HS (1983) Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis 27:972–979PubMedCrossRefGoogle Scholar
  6. Haccou P, Meelis E (1994) Statistical analyses of behavioural data. Oxford University Press, OxfordGoogle Scholar
  7. Hanauska-Brown LA, Dufty AM, Roloff GJ (2003) Blood chemistry, cytology, and body condition in adult Northern Goshawks (Accipiter gentilis). J Raptor Res 37:299–306Google Scholar
  8. Hawkey CM, Dennett TB (1989) A colour atlas of comparative veterinary haematology. Normal and abnormal blood cells in mammals, birds and reptiles. Wolfe Medical Publ, LondonGoogle Scholar
  9. Hawkey CM, Horsley DT, Keymer IF (1989) Haematology of wild penguins (Spenisciformes) in the Falkland Islands. Avian Pathol 18:495–502PubMedCrossRefGoogle Scholar
  10. Hoi-Leitner M, Romero-Pujante M, Hoi H, Pavlova A (2001) Food availability and immune capacity in serin (Serinus serinus) nestlings. Behav Ecol Sociobiol 49:333–339CrossRefGoogle Scholar
  11. Hõrak P, Jenni-Eiermann S, Ots I, Tegelmann L (1998a) Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can J Zool 76:2235–2244Google Scholar
  12. Hõrak P, Ots I, Murumägi A (1998b) Hematological health state indices of reproducing great tits. A response to brood size manipulation. Funct Ecol 12:750–756CrossRefGoogle Scholar
  13. Karesh WB, Uhart MM, Frere E, Gandini P, Braselton WE, Puche H, Cook RA (1999) Health evaluation of free-ranging rockhopper penguins (Eudyptes chrysocomes) in Argentina. J Zool Wildl Med 30:25–31Google Scholar
  14. Lee KA (2006) Linking immune defenses and life history at the levels of the individual and the species. Integr Comp Biol 46:1000–1015CrossRefGoogle Scholar
  15. Lobato E, Moreno J, Merino S, Sanz J, Arriero E (2005) Haematological variables are good predictors of recruitment in nestling pied flycatchers (Ficedula hypoleuca). Écoscience 12:27–34CrossRefGoogle Scholar
  16. Masello JF, Choconi RG, Helmer M, Kremberg T, Lubjuhn T, Quillfeldt P (2009) Do leucocytes reflect condition in nestling burrowing parrots Cyanoliseus patagonus in the wild? Comp Biochem Physiol A 152:176–181CrossRefGoogle Scholar
  17. Maxwell MH, Robertson GW (1998) The avian heterophil leucocyte: a review. World Poult Sci J 54:155–178CrossRefGoogle Scholar
  18. McDonald JH (2008) Handbook of biological statistics. Sparky House Publ BaltimoreGoogle Scholar
  19. Merino S, Barbosa A (1997) Haematocrit values in chinstrap penguins (Pygoscelis antarcitca): variation with age and reproductive status. Pol Biol 17:14–16CrossRefGoogle Scholar
  20. Merino S, Martínez J, Møller AP, Sanabria L, de Lope F, Pérez J, Rodríguez-Caabeiro F (1999) Phytohaemagglutinin injection assay and physiological stress in nestling house martins. Anim Behav 58:219–222PubMedCrossRefGoogle Scholar
  21. Moreno J, de Léon A, Fargallo JA, Moreno E (1998) Breeding time, health and immune response in the chinstrap penguin Pygoscelis antarctica. Oecologia 115:312–319CrossRefGoogle Scholar
  22. Moreno J, Yorio P, Garcia-Borboroglu P, Villar S (2002) Health state and reproductive output in Magellanic penguins (Spheniscus magellanicus). Ethol Ecol Evol 14:19–28CrossRefGoogle Scholar
  23. Nicol SC, Melrose W, Stahel CD (1988) Hematology and metabolism of the blood of the little penguins, Eudyptula minor. Comp Biochem Physiol A 89:383–386PubMedCrossRefGoogle Scholar
  24. Ots I, Hõrak P (1996) Great tits Parus major trade health for reproduction. Proc R Soc Lond B 263:1443–1447CrossRefGoogle Scholar
  25. Ots I, Murumägi A, Hõrak P (1998) Haematological health state of reproducing Great Tits: methodology and sources of natural variation. Funct Ecol 12:700–707CrossRefGoogle Scholar
  26. Owen JC, Moore FR (2006) Seasonal differences in immunological condition of three species of thrushes. Condor 108:389–398CrossRefGoogle Scholar
  27. Plischke A, Quillfeldt P, Lubjuhn T, Merino S, Masello JF (2010) Leucocytes in adult burrowing parrots Cyanoliseus patagonus in the wild: variation between contrasting breeding seasons, gender, and individual condition. J Ornithol 151:347–354CrossRefGoogle Scholar
  28. Poisbleau M, Demongin L, Strange IJ, Otley H, Quillfeldt P (2008) Aspects of the breeding biology of the Southern Rockhopper Penguin Eudyptes c. chrysocome and new consideration on the intrinsic capacity of the A-egg. Polar Biol 31:925–932CrossRefGoogle Scholar
  29. Poisbleau M, Demongin L, Angelier F, Dano S, Lacroix A, Quillfeldt P (2009a) What ecological factors can affect albumen corticosterone levels in the clutches of seabirds? Timing of breeding, disturbance and laying order in rockhopper penguins (Eudyptes chrysocome chrysocome). Gen Comp Endocrinol 162:139–145PubMedCrossRefGoogle Scholar
  30. Poisbleau M, Demongin L, Trouvé C, Quillfeldt P (2009b) Maternal deposition of yolk corticosterone in clutches of Southern Rockhopper Penguins (Eudyptes chrysocome chrysocome). Horm Behav 55:500–506PubMedCrossRefGoogle Scholar
  31. Poisbleau M, Demongin L, van Noordwijk HJ, Strange IJ, Quillfeldt P (2010) Sexual dimorphism and use of morphological measurements to sex adults, immatures and chicks of rockhopper penguins. Ardea 98:217–224CrossRefGoogle Scholar
  32. Quillfeldt P, Ruiz G, Aguilar Rivera M, Masello JF (2008) Variability in leucocyte profiles in thin-billed prions Pachyptila belcheri. Comp Biochem Physiol A 150:26–31CrossRefGoogle Scholar
  33. Quinn GP, Keough MJ (2003) Experimental designs and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  34. Raya Rey A, Trathan P, Schiavini A (2007) Inter-annual variation in provisioning behaviour of Southern Rockhopper Penguins Eudyptes chrysocome chrysocome at Staten Island, Argentina. Ibis 149:826–835CrossRefGoogle Scholar
  35. Reeze WO (2004) Functional Anatomy and Physiology of Domestic Animals, 3rd edn. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  36. Riou S, Chastel O, Lacroix A, Hamer KC (2010) Stress and parental care: prolactin responses to acute stress throughout the breeding cycle in a long-lived bird. Gen Comp Endocrinol 168:8–13Google Scholar
  37. Roitt I, Brostoff J, Male D (1993) Immunology. Mosby, LondonGoogle Scholar
  38. Ruiz G, Rosenmann M, Novoa FF, Sabat P (2002) Hematological parameters and stress index in rufous-collared sparrows dwelling in urban environments. Condor 104:162–166CrossRefGoogle Scholar
  39. Sergent N, Rogers T, Cunningham M (2004) Influence of biological and ecological factors on hematological values in wild little penguins, Eudyptula minor. Comp Biochem Physiol A 138:333–339CrossRefGoogle Scholar
  40. Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321PubMedCrossRefGoogle Scholar
  41. Strange IJ (1982) Breeding ecology of the rockhopper penguin (Eudyptes crestatus) in the Falkland Islands. Le Gerfaut 72:137–188Google Scholar
  42. Vleck CM, Vertalino N, Vleck D, Bucher TL (2000) Stress, corticosterone, and heterophil to lymphocyte ratios in free-living Adélie penguins. Condor 102:392–400CrossRefGoogle Scholar
  43. Warham J (1972) Breeding seasons and sexual dimorphism in rockhopper penguins. Auk 89:86–105Google Scholar
  44. Williams AJ (1982) Chick feeding rates of macaroni and rockhopper penguins at Marion Island. Ostrich 53:129–134CrossRefGoogle Scholar
  45. Williams TD (1995) The penguins. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Nina Dehnhard
    • 1
  • Maud Poisbleau
    • 1
    • 2
  • Laurent Demongin
    • 1
    • 2
  • Petra Quillfeldt
    • 1
  1. 1.Vogelwarte RadolfzellMax Planck Institute for OrnithologyRadolfzellGermany
  2. 2.Department Biology, EthologyUniversity of AntwerpWilrijk, AntwerpBelgium

Personalised recommendations