Journal of Ornithology

, Volume 152, Issue 3, pp 793–800 | Cite as

Factors influencing host nest use by the brood parasitic Asian Koel (Eudynamys scolopacea)

  • Sajeda BegumEmail author
  • Arne Moksnes
  • Eivin Røskaft
  • Bård G. Stokke
Original Article


Host nest use by the brood parasitic Asian Koel (Eudynamys scolopacea) has not previously been studied in detail. Here, we investigated factors that may explain patterns of nest use among three commonly used host species of the Asian Koel in Bangladesh; Long-tailed Shrikes (Lanius schach), House Crows (Corvus splendens) and Common Mynas (Acridotheres tristis). In all three host species, the risk of parasitism increased significantly as the distances between host nests and potential parasite vantage points decreased, and furthermore, there was a significant positive correlation between nest volume and risk of parasitism. The nest height above ground was an important predictor of parasitism in Long-tailed Shrikes with increased parasitism risk in nests at lower heights. In addition, nests of Long-tailed Shrikes and House Crows close to active conspecific neighbors were less likely to be parasitized than nests further away. In Common Mynas and House Crows, the risk of parasitism increased during the breeding season with their first nests initiated before the Asian Koel started its egg laying. Clutches of all three host species were parasitized during the host egg laying period. Finally, in Common Mynas, the host clutch size was higher in parasitized than unparasitized nests. The results from the present study correspond well with findings from other brood parasite–host systems, and indicate that brood parasites in general use many similar cues when selecting host nests.


Brood parasitism Hosts Parasitism risk Nest use Nest characteristics 


Bislang wurde die Nutzung der Wirts-Nester durch den Brutparasiten Indischer Koel nie im Detail analysiert. Wir untersuchten deshalb Faktoren, die möglicherweise erklären können, nach welchen Kriterien der Brutparasit Asiatischer Koel die Nester von drei weitverbreiteten Wirtsarten in Bangladesch auswählt: vom Schachwürger (Lanius schach), der Glanzkrähe (Corvus splendens) und des Hirtenstar (oder auch Hirtenmaina; Acridotheres tristis). Bei allen drei Wirtsarten stieg das Risiko, parasitiert zu werden mit sinkendem Abstand zwischen ihren Nestern und potentiellen Beobachtungsplätzen der Brutparasiten signifikant an. Darüber hinaus gab es eine signifikante positive Korrelation zwischen der Größe eines Nestes und seinem Risiko, vom Brutparasiten benutzt zu werden. Bei der Hirtenmaina war die Höhe der Nester über Grund ein wichtiger Prädiktor für ihre Auswahl durch den Brutparasiten, bei zunehmendem Parasitier-Risiko je tiefer die Nester lagen. Ferner wurden die Nester von Schachwürgern und Glanzkrähen nahe Nestern von Artgenossen mit geringerer Wahrscheinlichkeit vom Parasiten ausgewählt als solche in größerer Entfernung. Bei Hirtenstar und Glanzkrähen wuchs das Parasitier-Risiko während der Brutzeit, wenn ihre Nester bezogen wurden, bevor der Asiatische Koel selbst mit der Eiablage begann. Die Nester aller drei Wirtsarten wurden in der Zeit ihrer Eiablage von dem Brutparasiten benutzt. Schließlich waren beim Hirtenstar die eigenen Gelege in parasitierten Nestern größer als in unparasitierten. Die Ergebnisse dieser Untersuchung stimmen gut mit entsprechenden Untersuchungen an anderen Brutparasit-Wirtssystemen überein und legen nahe, daß Brutparasiten bei der Auswahl ihrer Wirts-Nester viele ähnliche Auswahlkriterien anwenden.



We are indebted to Sayad Mahmudur Rahman, Delip Kumar Das, Mominul Islam Nahid, Mohammad Yousuf, Mohammad Jahir and Monoronjon Barui for their help with data collection in the field. We are most grateful to all the members of the Brood Parasitism Research Group, Department of Biology, Norwegian University of Science and Technology (NTNU), to Thomas W.P. Friedl, Brian Peer and one anonymous referee for helpful comments on the manuscript. The study was supported by a Grant through a ‘Quota Scheme’ at NTNU and a research grant from The Norwegian Programme for Development, Research and Education (NUFU).


  1. Ali S, Ripley SD (1987) Compact handbook of the birds of India and Pakistan, 2nd edn. Oxford University Press, BombayGoogle Scholar
  2. Anderson WL, Storer RW (1976) Factors influencing Kirtland’s warbler nesting success. Jack-pine Warb 54:105–115Google Scholar
  3. Antonov A, Stokke BG, Moksnes A, Røskaft E (2006) Coevolutionary interactions between common cuckoos and corn buntings. Condor 108:414–422CrossRefGoogle Scholar
  4. Antonov A, Stokke BG, Moksnes A, Røskaft E (2007) Factors influencing the risk of common cuckoo Cuculus canorus parasitism on marsh warblers Acrocephalus palustris. J Avian Biol 38:390–393Google Scholar
  5. Anvery FA (2002) The crow’s menace. Wildl Environ 11:30–31Google Scholar
  6. Avilés JM, Moskát C, Bán M, Hargitai R, Parejo D (2009) Common cuckoos (Cuculus canorus) do not rely on indicators of parental abilities when searching for host nests: the importance of host defenses. Auk 126:431–438CrossRefGoogle Scholar
  7. Banks AJ, Martin TE (2001) Host activity and the risk of nest parasitism by brown-headed cowbirds. Behav Ecol 12:31–40Google Scholar
  8. Begum S, Moksnes A, Røskaft E, Stokke BG (2011) Interactions between the Asian koel (Eudynamys scolopacea) and its hosts. Behaviour (in press)Google Scholar
  9. Brown M, Lawes MJ (2007) Colony size and nest density predict the likelihood of parasitism in the colonial southern red bishop Euplectes orix - diderick cuckoo Chrysococcyx caprius system. Ibis 149:321–327CrossRefGoogle Scholar
  10. Canestrari D, Marcos JM, Baglione V (2009) Cooperative breeding in carrion crows reduces the rate of brood parasitism by great spotted cuckoos. Anim Behav 77:1337–1344CrossRefGoogle Scholar
  11. Chance EP (1922) The cuckoo’s secret. Sidgewick and Jackson, LondonGoogle Scholar
  12. Chance EP (1940) The truth about the cuckoo. Country Life, LondonGoogle Scholar
  13. Christians JK, Evanson M, Aiken JJ (2001) Seasonal decline in clutch size in European starlings: a novel randomizationtest to distinguish between the timing and quality hypotheses. J Anim Ecol 70:1080–1087CrossRefGoogle Scholar
  14. Clarke AL, Øien IJ, Honza M, Moksnes A, Røskaft E (2001) Factors affecting reed warbler risk of brood parasitism by the common cuckoo. Auk 118:534–538CrossRefGoogle Scholar
  15. Clotfelter ED (1998) What cues do Brown-headed cowbirds use to locate red-winged blackbird host nests? Anim Behav 55:1181–1189PubMedCrossRefGoogle Scholar
  16. Davies NB (2000) Cuckoos, cowbirds and other cheats. Poyser, LondonGoogle Scholar
  17. Feare CJ, Mungroo Y (1989) Notes on the house crow Corvus splendens in Mauritius. Bull Brit Orn Cl 109:199–201Google Scholar
  18. Ferguson JWH (1994) The importance of low host densities for successful parasitism of diederik cuckoos on red-bishop birds. S Afr J Zool 29:70–73Google Scholar
  19. Fiorini VD, Tuero DT, Reboreda JC (2009) Host behaviour and nest-site characteristics affect the likelihood of brood parasitism by shiny cowbirds on chalk-browed mockingbirds. Behaviour 146:1387–1403CrossRefGoogle Scholar
  20. Freeman S, Gori DF, Rohwer S (1990) Red-winged blackbirds and brown-headed cowbirds: some aspects of a host–parasite relationship. Condor 92:336–340CrossRefGoogle Scholar
  21. Gill BJ (1983) Brood-parasitism by the shining cuckoo Chrysococcyx lucidus at Kaikoura, New Zealand. Ibis 125:40–55CrossRefGoogle Scholar
  22. Gill BJ (1998) Behavior and ecology of the Shining cowbird Chrysococcyx lucidus. In: Rothstein SI, Robinson SK (eds) Parasitic birds and their hosts: studies in coevolution, no. 9. Oxford University Press, Oxford, pp 143–151Google Scholar
  23. Gochfeld M (1979) Brood parasite and host coevolution: interactions between shiny cowbirds and two species of meadow larks. Am Nat 113:855–870CrossRefGoogle Scholar
  24. Grim T (2006) Cuckoo growth performance in parasitized and unused hosts: not only host size matters. Behav Ecol Sociobiol 60:716–723CrossRefGoogle Scholar
  25. Hauber ME (2001) Site selection and repeatability in brown-headed cowbird (Molothrus ater) parasitism of eastern phoebe (Sayornis phoebe) nests. Can J Zool 79:1518–1523Google Scholar
  26. Hauber ME, Russo SA (2000) Perch proximity correlates with higher rates of cowbird parasitism of ground nesting song sparrows. Wilson Bull 112:150–153CrossRefGoogle Scholar
  27. Hays H, Lecroy M (1971) Field criteria for determining incubation stage in eggs of the common tern. Wilson Bull 83:425–429Google Scholar
  28. Higgins PJ (1999) Handbook of Australian, New Zealand and Antarctic birds, vol. 4, Parrots to Dollarbirds. Oxford University Press, LondonGoogle Scholar
  29. Hoover JP, Yasukawa K, Hauber ME (2006) Spatially and temporally structured avian brood parasitism affects the fitness benefits of hosts’ rejection strategies. Anim Behav 72:881–890CrossRefGoogle Scholar
  30. Hossain ABME, Khan SA, Islam MA (1995) In inventory of plant diversity in relation with the ecology and environment of Jahangirnagar University: Vegetational composition and their taxonomic identify. Bangladesh J Life Sci 7:95–103Google Scholar
  31. Kleven O, Moksnes A, Røskaft E, Honza M (1999) Host species affects the growth rate of cuckoo (Cuculus canorus) chicks. Behav Ecol Sociobiol 47:41–46CrossRefGoogle Scholar
  32. Lack D (1968) Ecological adaptations for breeding in birds. Methuen, LondonGoogle Scholar
  33. Lamba BS (1963) The nidification of some common Indian birds. J Bombay Nat Hist Soc 60:121–133Google Scholar
  34. Langmore NE, Kilner RM (2007) Breeding site and host selection by Horsefield’s bronze-cuckoos, Chalcites basalis. Anim Behav 74:995–1004CrossRefGoogle Scholar
  35. Larison B, Laymon SA, Williams PL, Smith TB (1998) Song sparrows vs. cowbird brood parasites: impacts of forest structure and nest-site selection. Condor 100:93–101CrossRefGoogle Scholar
  36. Lawes MJ, Kirkman S (1996) Egg recognition and interspecific brood parasitism rates in red bishops (Aves: Ploceidae). Anim Behav 52:553–563Google Scholar
  37. Martinez JG, Soler M, Soler JJ (1996) The effect of Magpie breeding density and synchrony on brood parasitism by great spotted cuckoos. Condor 98:272–278CrossRefGoogle Scholar
  38. Massam M (2001) Common myna [Farm note No. 61/2001]. Department of Agriculture (Western Australia)Google Scholar
  39. McLaren CM, Sealy SG (2003) Factors influencing susceptibility of host nests to brood parasitism. Ethol Ecol Evol 15:343–353CrossRefGoogle Scholar
  40. Mohsanin S, Khan MMH (2009) Status and seasonal occurrence of the birds in Jahangirnagar Univesrsity Campus, Bangladesh. Bangladesh J Life Sci 21:29–37Google Scholar
  41. Moksnes A, Røskaft E, Braa AT, Korsnes L, Lampe HM, Pedersen HC (1990) Behavioral responses of potential hosts towards artificial cuckoo eggs and dummies. Behaviour 116:64–89CrossRefGoogle Scholar
  42. Moskát C, Honza M (2000) Effect of nest and nest site characteristics on the risk of cuckoo Cuculus canorus parasitism in the great reed warbler Acrocephalus arundinaceus. Ecography 23:335–341CrossRefGoogle Scholar
  43. Øien IJ, Honza M, Moksnes A, Røskaft E (1996) The risk of parasitism in relation to the distance from reed warbler nests to cuckoo perches. J Anim Ecol 65:147–153CrossRefGoogle Scholar
  44. Ortega CP (1998) Cowbirds and other brood parasites. University of Arizona Press, TucsonGoogle Scholar
  45. Palomino JJ, Martin-Vivaldi M, Soler M (1999) Determinants of reproductive success in the rufous bush robin (Cercotrichas galactotes). J Ornithol 140:467–480CrossRefGoogle Scholar
  46. Payne RB (2005) The cuckoos; with a molecular genetic analysis of cuckoo phylogeny by Michael D Sorenson and Robert B Payne. Oxford University Press, OxfordGoogle Scholar
  47. Peer BD, Sealy SG (2004) Correlates of egg rejectionin hosts of the brown-headed cowbird. Condor 106:580–599CrossRefGoogle Scholar
  48. Polaciková L, Procházka P, Cherry MI, Honza M (2009) Choosing suitable hosts: common cuckoos Cuculus canorus parasitize great reed warblers Acrocephalus arundinaceus of high quality. Evol Ecol 23:879–891CrossRefGoogle Scholar
  49. Romig GP, Crawford RD (1996) Clay-colored Sparrows in North Dakota parasitized by brown-headed cowbirds. Prair Nat 27:193–203Google Scholar
  50. Røskaft E, Moksnes A, Stokke BG, Bicík V, Moskát C (2002) Aggression to dummy cuckoos by potential European cuckoo hosts. Behaviour 139:613–628CrossRefGoogle Scholar
  51. Rothstein SI (1990) A model system for coevolution—avian brood parasitism. Annu Rev Ecol Syst 21:481–508CrossRefGoogle Scholar
  52. Sackmann P, Reboreda JC (2003) A comparative study of the Shiny cowbird parasitism of two large hosts, the chalk-browed mockingbird and the rufous-bellied thrush. Condor 105:728–736CrossRefGoogle Scholar
  53. Saunders CA, Arcese P, O’Connor KD (2003) Nest site characteristics in the song sparrow and parasitism by brown-headed cowbirds. Wilson Bull 115:24–28CrossRefGoogle Scholar
  54. Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New HavenGoogle Scholar
  55. Soler JJ, Soler M, Møller AP, Martinez JG (1995) Does the great spotted cuckoo choose magpie hosts according to their parenting ability. Behav Ecol Sociobiol 36:201–206CrossRefGoogle Scholar
  56. Stokke BG, Hafstad I, Rudolfsen G, Bargain B, Beier J, Campas DB, Dyrcz A, Honza M, Leisler B, Pap PL, Patapavicius R, Prochazka P, Schulze-Hagen K, Thomas R, Moksnes A, Møller AP, Røskaft E, Soler M (2007) Host density predicts presence of cuckoo parasitism in reed warblers. Oikos 116:913–922CrossRefGoogle Scholar
  57. Strausberger BM, Ashley MV (1997) Community-wide patterns of parasitism of a host ‘‘generalist’’ brood-parasitic cowbird. Oecologia 112:254–262CrossRefGoogle Scholar
  58. Svagelj WS, Fernández GJ, Mermoz ME (2009) Effects of nest-site characteristics and parental activity on cowbird parasitism and nest predation in brown-and-yellow marshbirds. J Field Ornithol 80:9–18CrossRefGoogle Scholar
  59. Tewksbury JJ, Martin TE, Hejl SJ, Kuehn MJ, Jenkins JW (2002) Parental care of a cowbird host: caught between the costs of egg-removal and nest predation. Proc R Soc Lond B 269:423–429CrossRefGoogle Scholar
  60. Uyehara JC, Narins PM (1995) Nest defence by willow flycatchers to brood parasitic intruders. Condor 97:361–368CrossRefGoogle Scholar
  61. Vikan JR, Stokke BG, Rutila J, Huhta E, Moksnes A, Røskaft E (2010) Evolution of defences against cuckoo (Cuculus canorus) parasitism in bramblings (Fringilla montifringilla): a comparison of four populations in Fennoscandia. Evol Ecol 24:1141–1157CrossRefGoogle Scholar
  62. Welbergen JA, Davies NB (2008) Reed warblers discriminate cuckoos from sparrowhawks with graded alarm signals that attract mates and neighbours. Anim Behav 76:811–822CrossRefGoogle Scholar
  63. Welbergen JA, Davies NB (2009) Strategic variation in mobbing as a front line of defense against brood parasitism. Curr Biol 19:235–240PubMedCrossRefGoogle Scholar
  64. Whistler H (1949) A popular handbook of Indian birds. Oxford University Press, Bombay, IndiaGoogle Scholar
  65. Wyllie I (1981) The cuckoo. Universe, New YorkGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2011

Authors and Affiliations

  • Sajeda Begum
    • 1
    Email author
  • Arne Moksnes
    • 1
  • Eivin Røskaft
    • 1
  • Bård G. Stokke
    • 1
  1. 1.Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations