Journal of Ornithology

, Volume 152, Issue 3, pp 603–608 | Cite as

Plasticity in nest site selection of Black Redstart (Phoenicurus ochruros): a response to human disturbance

  • Jia-Ni Chen
  • Nai-Fa Liu
  • Chuan Yan
  • Bei An
Original Article


Natural selection should favor flexibility in nest site selection when environmental variability influences individual fitness. Birds can modify their reproductive behaviors in response to predation cues. Similar to predation risk, human disturbance may cause birds to exhibit parental antipredator behavior. Effects of human disturbance on nest site selection of Black Redstarts (Phoenicurus ochruros) were investigated from 2006 to 2009. Black redstarts altered their manner of concealing nests following human disturbance. The Black Redstarts were found to shift their nests to deeper locations in the cavities in the subsequent breeding season after human disturbance. In an undisturbed study plot, nests were not well hidden in the first year but shifted to deeper positions in the nest cavities following disturbance from researchers. The depth in the nest cavity at which banded individual Black Redstarts nested was deeper than its previous nest location depth after human disturbance. The results obtained in this study suggest that the Black Redstarts cognize human disturbance as a predation risk and exhibit adaptive behavioral plasticity in nest site selection associated with concealment.


Nest site selection Behavioral plasticity Human disturbance Black redstart 


Natürliche Selektion sollte Flexibilität in der Wahl des Neststandortes fördern, wenn Variabilität in den Umweltbedingungen die individuelle Fitness beeinflusst. Vögel können ihr Fortpflanzungsverhalten in Antwort auf Prädationssignale verändern. Ähnlich wie das Prädationsrisiko dürfte Störung durch Menschen die Vögel dazu veranlassen, elterliches Feindabwehrverhalten zu zeigen. Wir haben die Folgen von Störungen durch Menschen auf die Wahl des Neststandortes beim Hausrotschwanz (Phoenicurus ochruros) von 2006 bis 2009 untersucht. Hausrotschwänze änderten die Art und Weise, wie sie ihre Nester versteckten, nach Störungen durch Menschen. In der auf Störung durch Menschen folgenden Brutsaison legten sie ihre Nester weiter hinten in den Hohlräumen an. In einer Studie ohne Störung waren die Nester im ersten Jahr nicht gut versteckt, wurden nach Störung durch die Forscher jedoch weiter hinten in den Hohlräumen angelegt. Die Stelle, wo einzelne beringte Hausrotschwänze brüteten, lag nach Störung durch Menschen weiter hinten in den Hohlräumen als der vorherige Neststandort. Die Ergebnisse dieser Studie deuten darauf hin, dass die Hausrotschwänze Störungen durch Menschen als Prädationsrisiko erkennen und adaptive Plastizität im Verhalten bei der Wahl des Neststandortes in Bezug auf das Verstecken des Nestes zeigen.



We are grateful to Hong-Yan Mu and Kai-Ji Fan for their help with data collection. We thank Dan Chen and Bo Du for the improvements they contributed to the manuscript. We appreciate the improvements in English usage made by Chan Robbins through the Association of Field Ornithologists’ program of editorial assistance and Daniel Janes. We are also thankful to Tomas W.P. Friedl and the four anonymous referees for their helpful comments on the manuscript. This study was supported by the National Natural Science Foundation of China (No. 30530130).


  1. Amat JA, Masero JA (2004) Predation risk on incubating adults constrains the choice of thermally favourable nest sites in a plover. Anim Behav 67:293–300CrossRefGoogle Scholar
  2. Berg A (2008) Habitat selection and reproductive success of ortolan buntings Emberiza hortulana on farmland in central Sweden—the importance of habitat heterogeneity. Ibis 150:565–573Google Scholar
  3. Bouskila A, Blumstein DT (1992) Rules of thumb for predation hazard assessment: predictions from a dynamic model. Am Nat 139:161–176CrossRefGoogle Scholar
  4. Candolin U, Voigt HR (1998) Predator-induced nest site preference: safe nests allow courtship. Anim Behav 56:1205–1211PubMedCrossRefGoogle Scholar
  5. de la Torre S, Snowdon CT, Bejarano M (2000) Effects of human activities on wild pygmy marmosets in Ecuadorian Amazonia. Biol Conserv 94:153–163CrossRefGoogle Scholar
  6. Diamond JK (1986) Natural selection: rapid evolution of urban birds. Nature 324:107–108CrossRefGoogle Scholar
  7. Eggers S, Griesser M, Nystrand M, Ekman J (2006) Predation risk induces changes in nest-site selection and clutch size in the Siberian jay. Proc R Soc Lond B Biol Sci 273:701–706CrossRefGoogle Scholar
  8. Ekner A, Tryjanowski P (2008) Do small hole nesting passerines detect cues left by a predator? A test on winter roosting sites. Acta Ornithol 43:107–111Google Scholar
  9. Forstmeier W, Weiss I (2004) Adaptive plasticity in nest-site selection in response to changing predation risk. Oikos 104:487–499CrossRefGoogle Scholar
  10. Frid A, Dill LM (2002) Human-caused disturbance stimuli as a form of predation risk. Conserv Ecol 6:11Google Scholar
  11. Ghalambor CK, Martin TE (2001) Fecundity–survival trade-offs and parental risk-taking in birds. Science 292:494–497Google Scholar
  12. Ghalambor CK, Martin TE (2002) Comparative manipulation of predation risk in incubating birds reveals variability in the plasticity of responses. Behav Ecol 13:101–108CrossRefGoogle Scholar
  13. Götmark F, Blomqvist D, Johansson OC, Bergkvist J (1995) Nest site selection: a trade-off between concealment and view of the surroundings? J Avian Biol 26:305–312CrossRefGoogle Scholar
  14. Hoekman ST, Ball IJ, Fondell TF (2002) Grassland birds orient nests relative to nearby vegetation. Wilson Bull 114:450–456CrossRefGoogle Scholar
  15. Jones J (2001) Habitat selection studies in avian ecology: a critical review. Auk 118:557–562CrossRefGoogle Scholar
  16. Lima SL, Dill LM (1990) Behavioral decisions made under risk of predation: a review and prospectus. Can J Zool 68:619–640CrossRefGoogle Scholar
  17. Martin TE (1993) Nest predation and nest sites. Bioscience 43:523–532CrossRefGoogle Scholar
  18. Martin TE (1995) Avian life history evolution in relation to nest sites, nest predation, and food. Ecol Monogr 65:101–127CrossRefGoogle Scholar
  19. Martin TE, Roper JJ (1988) Nest predation and nest-site selection of a western population of the hermit thrush. Condor 90:51–57CrossRefGoogle Scholar
  20. Marzluff JM (1988) Do pinyon jays alter nest placement based on prior experience? Anim Behav 36:1–10CrossRefGoogle Scholar
  21. Maynard SJ (1977) Parental investment—a prospective analysis. Anim Behav 25:1–9Google Scholar
  22. Miller DA, Grand JB, Fondell TF, Anthony RM (2007) Optimizing nest survival and female survival: consequences of nest selection for Canada geese. Condor 109:769–780CrossRefGoogle Scholar
  23. Mu HY, Liu NF, Yang M (2008) Breeding of the black redstart Phoenicurus ochruros rufivetris in the Southeastern Qingzang (Qinghai-Tibetan) plateau. Acta Zool Sin 54:201–208Google Scholar
  24. Müller C, Eiermann SJ, Blondel J, Perret P, Caro SP, Lambrechts M, Jenni L (2006) Effect of human presence and handling on circulating corticosterone levels in breeding blue tits (Parus caeruleus). Gen Com Endocr 148:163–171CrossRefGoogle Scholar
  25. Nilsson SG (1984) The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition. Ornis Scand 15:167–175CrossRefGoogle Scholar
  26. Owen M, Black JM (1990) Waterfowl ecology. Chapman and Hall, New YorkGoogle Scholar
  27. Peluc SI, Sillett TS, Rotenberry JT, Ghalambor CK (2008) Adaptive phenotypic plasticity in an island songbird exposed to a novel predation risk. Behav Ecol 19:830–835CrossRefGoogle Scholar
  28. Remm J, Lohmus A, Rosenvald R (2008) Density and diversity of hole-nesting passerines: dependence on the characteristics of cavities. Acta Ornithol 43:83–91CrossRefGoogle Scholar
  29. Ricklefs RE (1969) An analysis of nesting mortality in birds. Smithson Contrib Zool 9:1–48CrossRefGoogle Scholar
  30. Safine DE, Lindberg MS (2008) Nest habitat selection of white-winged scoters on Yukon Flats, Alaska. Wilson J Ornithol 120:582–593CrossRefGoogle Scholar
  31. Traykor JJ, Alisauska RT, Kehoe FP (2004) Nesting ecology of white-winged scoters (Melanitta fusca deglandi) at Redberry Lake, Saskatchewan. Auk 121:950–962CrossRefGoogle Scholar
  32. Wang YP, Chen SH, Jiang PP, Ding P (2008) Black-billed Magpies (Pica pica) adjust nest characteristics to adapt to urbanization in Hangzhou, China. Can J Zool 86:676–684CrossRefGoogle Scholar
  33. Wiebe KL, Martin KT (1998) Costs and benefits of nest cover for ptarmigan: changes within and between years. Anim Behav 56:1137–1144PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  1. 1.School of Life ScienceLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations