Journal of Ornithology

, Volume 152, Issue 2, pp 461–471 | Cite as

Influence of exurban development on bird species richness and diversity

Original Article


Exurban development is an accelerating land use trend in the United States with new housing units emerging in formerly closed forests. Conservation practitioners and planners suspect exurban development alters ecological processes and biodiversity to a considerable larger extent than suspected by inhabitants of exurban development areas, but empirical support for this assertion is lacking. To examine the consequences of exurban development, we studied forest bird communities in exurban development and forests located in and around Shenandoah National Park and Massanutten Mountain in northern Virginia, USA. We conducted point-count surveys for birds three times at 106 sample locations from April to July 2006. We recorded 44 species in total; 30 species were present in both exurban development and forests, 9 species were only found in exurban development, and 5 species only in forest. Bird species composition differed significantly between land-use types based on analysis in a multi-response permutation procedure (MRPP; P < 0.01). Relative bird abundance for forest specialist species changed significantly in exurban development versus forest (t test, P < 0.05). Three species, American Robin Turdus migratorius, Northern Cardinal Cardinalis cardinalis, and Common Grackle Quiscalus quiscula were indicators of exurban development. Indicators of forest were Carolina Chickadee Poecile carolinensis, Eastern Towhee Pipilo erythrophthalmus, and Wood Thrush Hylocichla mustelina. Our study demonstrates that exurban development alters bird community composition and relative abundance of forest specialist species.


Community response land cover Land-use change Rural sprawl Urban fringe Eastern deciduous forest 


Exurbane Landentwicklung (engl.: exurban development) ist ein rasant zunehmender Landnutzungstyp in den Vereinigten Staaten von Amerika, bei dem Wohngebäude in zuvor geschlossenen und naturnahen Wäldern konstruiert werden. Naturschutzorganisationen und Landschaftsplaner vermuten, dass Exurbane Landentwicklung die ökologischen Prozesse und Biodiversität bedeutend verändern, allerdings fehlen bisher empirische Daten dies zu belegen. Um den Einfluss von Exurbaner Landentwicklung zu ermitteln, haben wir Vogelgemeinschaften in Exurbaner Landentwicklung mit Vogelgemeinschaften naturnaher Wälder im und um den Shenandoah Nationalpark und Massanutten Mountain im Norden des US Bundesstaates Virginia untersucht. An 106 Stellen wurden alle Vögel mit Punkt-Stopp-Zählungen insgesamt dreimal in der Zeit von April bis Juli 2006 aufgenommen. Insgesamt wurden 44 Arten erfasst; 30 Arten waren in beiden Habitattypen anzutreffen, während neun Arten nur in exurbaner Landentwicklung und fünf ausschließlich im naturnahen Wald anzutreffen waren. Die Zusammensetzung der Vogelgemeinschaft unterschied sich signifikant zwischen beiden Vogelgesellschaften (MRPP, P < 0.01). Ebenso änderte sich die Relative Abundanz für Waldvögel signifikant zwischen Exurbaner Landentwicklung und naturnahem Wald (t-test, P < 0.05; Exurbane Landentwicklung geht in der Regel aus naturnahem Wald hervor). Drei Arten, Turdus migratorius, Cardinalis cardinalis, und Quiscalus quiscula wurden als Indikatorarten für Exurbane Landentwicklung identifiziert, während Poecile carolinensis, Pipilo erythrophthalmicus, und Hylocichla mustelina als Indikatorarten für naturnahe Wälder gelten können. Die Studie belegt, dass Exurbane Landentwicklung die Vogelgemeinschaften in der Artenzusammensetzung und die relative Abundanz der Waldvogelarten deutlich beeinflusst.


  1. Beissinger SR, Osborne DR (1982) Effects of urbanization on avian community organization. Condor 84:75–83CrossRefGoogle Scholar
  2. Bibby CJ, Burgess ND, Hill DA (1992) Bird census techniques. Neumann, RadebeulGoogle Scholar
  3. Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519CrossRefGoogle Scholar
  4. Blair RB (2001) Birds and butterflies along urban gradients in two ecoregions of the US. In: Lockwood JL, McKinney ML (eds) Biotic homogenization. Kluwer, Norwell, pp 33–56Google Scholar
  5. Blair R, Johnson E (2008) Suburban habitats and their role for birds in the urban-rural habitat network: points of local invasion and extinction? Landsc Ecol 23:1157–1169CrossRefGoogle Scholar
  6. Bock CE, Jones ZF, Bock JH (2008) The oasis effect: response of birds to exurban development in a southwestern savanna. Ecol Appl 18:1093–1106PubMedCrossRefGoogle Scholar
  7. Brown DG, Johnson KM, Oveland TR, Theobald DM (2005) Rural land-use trends in the conterminous United States, 1950–2000. Ecol Appl 15:1851–1863CrossRefGoogle Scholar
  8. Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. Landsc Urban Plan 74:46–69CrossRefGoogle Scholar
  9. Clergeau P, Savard JPL, Mennechez G, Falardeau G (1998) Bird abundance and diversity along a urban-rural gradient: a comparative study between two cities on different continents. Condor 100:413–425CrossRefGoogle Scholar
  10. Coleman JS, Temple SA, Craven SR (1997) Cats and wildlife: a conservation dilemma. Accessed 10 January 2010
  11. Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.00. User’s guide and application. Accessed 10 January 2010
  12. Croci S, Butet A, Georges A, Aguejdad R, Clergeau P (2008) Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach. Landsc Ecol 23:1171–1186CrossRefGoogle Scholar
  13. Crooks KR, Suarez AV, Bolger DT (2004) Avian assemblages along a gradient of urbanization in a highly fragmented landscape. Biol Conserv 115:451–462CrossRefGoogle Scholar
  14. Czech B, Krausman PR, Devers PK (2000) Economic associations among causes of species endangerment in the United States. Bioscience 50:593–601CrossRefGoogle Scholar
  15. Dale VH, Brown S, Haeuber RA, Hobbs NT, Huntly N, Naiman RJ, Riebsame WE, Turner MG, Valone TJ (2000) Ecological principles and guidelines for managing the use of land. Ecol Appl 10:639–670Google Scholar
  16. Dale V, Archer S, Chang M, Ojima D (2005) Ecological impacts and mitigation strategies for rural land management. Ecol Appl 15:1879–1892CrossRefGoogle Scholar
  17. Daniels T (1999) When city and country collide: managing growth in the metropolitan fringe. Island Press, WashingtonGoogle Scholar
  18. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  19. Emlen JT (1974) An urban bird community in Tucson, Arizona: derivation, structure, regulation. Condor 76:184–197CrossRefGoogle Scholar
  20. Engle DM, Criner TL, Boren JC, Masters RE, Gregory MS (1999) Response of breeding birds in the Great Plains to low density urban sprawl. Gt Plains Res 9:55–73Google Scholar
  21. Evans KL, Newson SE, Gaston KJ (2009) Habitat influences on urban avian assemblages. Ibis 151:19–39CrossRefGoogle Scholar
  22. Fernández-Juricic E, Jokimäki J (2001) A habitat island approach to conserving birds in urban landscapes: case studies from southern and northern Europe. Biodivers Conserv 10:2023–2043CrossRefGoogle Scholar
  23. Fraterrigo JM, Wiens JA (2005) Bird communities of the Colorado Rocky Mountains along a gradient of exurban development. Landsc Urban Plan 71:263–275CrossRefGoogle Scholar
  24. Friesen LE, Eagles PFJ, Mackay RJ (1995) Effects of residential development on forest-dwelling neotropical migrant songbirds. Conserv Biol 9:1408–1414CrossRefGoogle Scholar
  25. Garson J, Aggarwal A, Sarkar S (2002) Birds as surrogates for biodiversity: an analysis of a data set from Southern Quebec. J Biosci 27:347–360PubMedCrossRefGoogle Scholar
  26. Germaine SS, Rosenstock SS, Schweinsburg RE, Richardson WS (1998) Relationships among breeding birds, habitat and residential development in Greater Tucson, Arizona. Ecol Appl 8:680–691CrossRefGoogle Scholar
  27. Gillies C, Clout M (2003) The prey of domestic cats (Felis catus) in two suburbs of Auckland city, New Zealand. J Zool Lond 259:309–315CrossRefGoogle Scholar
  28. Hansen AJ, Rasker R, Maxwell B, Rotella JJ, Johnson JD, Wright Parmenter A, Langner U, Cohen WB, Lawrence RL, Kraska MPV (2002) Ecological causes and consequences of demographic change in the New West. Bioscience 52:151–168CrossRefGoogle Scholar
  29. Hansen AJ, Knight RL, Marzluff JM, Powell S, Brown K, Gude PH, Jones K (2005) Effects of exurban development on biodiversity: patterns, mechanisms, and research needs. Ecol Appl 15:1893–1905CrossRefGoogle Scholar
  30. Hines JE (2006) PRESENCE 2.4—Software to estimate patch occupancy and related parameters. USGS-PWRC. Accessed 10 January 2010
  31. Holmes RT, Sturges FW (1975) Bird community dynamics and energetics in a northern hardwoods ecosystem. J Anim Ecol 44:175–200CrossRefGoogle Scholar
  32. Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national land-cover database for the United States. Photogramm Eng Remote Sens 70:829–840Google Scholar
  33. Huang C, Yang L, Wylie B, Homer C (2001) A strategy for estimating tree canopy density using Landsat 7 ETM+ and high resolution images over large areas: national land cover database mapping zone 60. Third International Conference on Geospatial Information in Agriculture and Forestry. Sioux Falls, SD, USA. CD-ROM, 1 disk. US Environmental Protection Agency, US Dept of Agriculture Forest Service (Forest Inventory and Analysis Program), USGS EROS Data CenterGoogle Scholar
  34. Jokimäki J, Huhta E (2000) Artificial nest predation and abundance of birds along an urban gradient. Condor 102:838–847CrossRefGoogle Scholar
  35. Jokimäki J, Kaisanlahti-Jokimäki ML, Sorace A, Fernández-Juricic E, Rodriguez-Prieto I, Jimenez MD (2005) Evaluation of the ‘safe nesting zone’ hypothesis across an urban gradient: a multi-scale study. Ecography 28:59–70CrossRefGoogle Scholar
  36. Kingery HE (1998) Colorado breeding bird atlas. Colorado Bird Atlas Partnership and Colorado Division of Wildlife Denver, DenverGoogle Scholar
  37. Kluza DA, Griffin CR, Degraaf RM (2000) Housing developments in rural New England: effects on forest birds. Anim Conserv 3:15–26CrossRefGoogle Scholar
  38. Lenth BA, Knight RL, Gilgert WC (2006) Conservation value of clustered housing developments. Conserv Biol 20:1445–1456PubMedCrossRefGoogle Scholar
  39. Lepczyk CA, Flather CH, Radeloff VC, Pidgeon AM, Hammer RB, Liu JG (2008) Human impacts on regional avian diversity and abundance. Conserv Biol 22:405–416PubMedCrossRefGoogle Scholar
  40. Liu J, Daily GC, Ehrlich PR, Luck GW (2003) Effects of household dynamics on resource consumption and biodiversity. Nature 421:530–533PubMedCrossRefGoogle Scholar
  41. Luniak M (1994) The development of bird communities in new housing estates in Warsaw. Memorab Zool 49:257–267Google Scholar
  42. Mackenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255CrossRefGoogle Scholar
  43. Mackenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207CrossRefGoogle Scholar
  44. Marzluff JM (2001) Worldwide urbanization and its effects on birds. In: Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology and conservation in an urbanizing world. Kluwer, Boston, pp 19–47Google Scholar
  45. Marzluff JM, Bowman R, Donnelly R (2001) A historical perspective on urban bird research: trends, terms and approaches. In: Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology and conservation in an urbanizing world. Kluwer, Boston, pp 1–17Google Scholar
  46. Mayer AL, Cameron GN (2003) Landscape characteristics, spatial extent, and breeding bird diversity in Ohio, USA. Divers Distrib 9:297–311CrossRefGoogle Scholar
  47. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  48. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data. Version 4. MjM Software Design, Gleneden BeachGoogle Scholar
  49. McIntyre NE (1995) Effects of forest patch size on avian diversity. Landsc Ecol 10:85–99CrossRefGoogle Scholar
  50. McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890CrossRefGoogle Scholar
  51. McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260CrossRefGoogle Scholar
  52. McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176CrossRefGoogle Scholar
  53. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–456PubMedCrossRefGoogle Scholar
  54. Merenlender AM, Reed SE, Heise KL (2009) Exurban development influences woodland bird composition. Landsc Urban Plan 92:255–263CrossRefGoogle Scholar
  55. Miller JR, Wiens JA, Hobbs NT, Theobald DM (2003) Effects of human settlement on bird communities in lowland riparian areas of Colorado (USA). Ecol Appl 13:1041–1059CrossRefGoogle Scholar
  56. Nelson AC (1992) Characterizing exurbia. J Plan Lit 6:350–368CrossRefGoogle Scholar
  57. Nilon CH, Long CN, Zipperer WC (1995) Effects of wildland development on forest bird communities. Landsc Urban Plan 32:81–92CrossRefGoogle Scholar
  58. Odell EA, Knight RL (2001) Songbird and medium-sized mammal communities associated with exurban development in Pitkin County, Colorado. Conserv Biol 15:1143–1150CrossRefGoogle Scholar
  59. Ortega-Alvarez R, MacGregor-Fors I (2009) Living in the big city: effects of urban land-use on bird community structure, diversity, and composition. Landsc Urban Plan 90:189–195CrossRefGoogle Scholar
  60. Palomino D, Carrascal LM (2005) Birds on novel island environments: a case study with the urban avifauna of Tenerife (Canary Islands). Ecol Res 20:611–617CrossRefGoogle Scholar
  61. Park CR, Lee WS (2000) Relationship between species composition and area in breeding birds of urban woods in Seoul, Korea. Landsc Urban Plan 51:29–36CrossRefGoogle Scholar
  62. Petit DR, Petit L, Saab VA, Martin TE (1995) Fixed-radius point counts in forests. USDA For Serv Tech Rep 149:49–56Google Scholar
  63. Poole AE (2005) The birds of North America online. Cornell Laboratory of Ornithology, Ithaca. Accessed 10 January 2010
  64. Radeloff VC, Hammer RB, Voss PR, Hagen AE, Field DR, Mladenoff DJ (2001) Human demographic trends and landscape level forest management in the northwest Wisconsin Pine Barrens. For Sci 47:229–241Google Scholar
  65. Radeloff VC, Hammer RB, Stewart SI (2005a) Rural and suburban sprawl in the US Midwest from 1940 to 2000 and its relation to forest fragmentation. Conserv Biol 19:793–805CrossRefGoogle Scholar
  66. Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, Mckeefry JF (2005b) The wildland-urban interface in the United States. Ecol Appl 15:799–805CrossRefGoogle Scholar
  67. Rasker R, Hansen AJ (2000) Natural amenities and population growth in the Greater Yellowstone region. Hum Ecol Rev 7:30–40Google Scholar
  68. Renner SC (2005) Biodiversity: there’s a role to be played by museum-keepers’ too. Nature 438:914PubMedCrossRefGoogle Scholar
  69. Renner SC, Waltert M, Mühlenberg M (2006) Comparison of bird communities in primary versus young secondary tropical montane cloud forest in Guatemala. Biodivers Conserv 15:1545–1575CrossRefGoogle Scholar
  70. Roth RR, Johnson MS, Underwood TJ (1996) Wood thrush (Hylocichla mustelina). The Birds of North America, no. 246. The Birds of North America, PhiladelphiaGoogle Scholar
  71. Sallabanks R, James FC (1999) American Robin (Turdus migratorius). The Birds of North America, no. 462. The Birds of North America, PhiladelphiaGoogle Scholar
  72. Schnaiberg J, Riera J, Turner MG, Voss PR (2002) Explaining human settlement patterns in a recreational lake district: Vilas County, Wisconsin, USA. Environ Manag 30:24–34CrossRefGoogle Scholar
  73. Suarez-Rubio M, Thomlinson JR (2009) Landscape and patch-level factors influence bird communities in an urbanized tropical island. Biol Conserv 142:1311–1321CrossRefGoogle Scholar
  74. Theobald DM (2001) Land use dynamics beyond the American urban fringe. Geogr Rev 91:544–564CrossRefGoogle Scholar
  75. Theobald DM (2004) Placing exurban land-use change in a human modification framework. Front Ecol Environ 2:139–144CrossRefGoogle Scholar
  76. Theobald DM (2005) Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol Soc 10:32–66Google Scholar
  77. Tilghman NG (1987) Characteristics of urban woodlands affecting breeding bird diversity and abundance. Landsc Urban Plan 14:481–495CrossRefGoogle Scholar
  78. Tilman D, May RM, Lehman CL, Nowak MA (2002) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  79. U.S. Census Bureau (2007) State and county quickfacts. Last revised: Friday, 12th January 2007 16:06:43 EST. Accessed 7 January 2010
  80. United Nations, Department of Economic and Social Affairs, Population Division (2007) World population prospects: the 2007., Accessed 2 October 2010
  81. USDA and USDI (2001) Urban wildland interface communities within vicinity of Federal lands that are at high risk from wildfire. Fed Regist 66:751–777Google Scholar
  82. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  83. Weidinger K (2002) Interactive effects of concealment, parental behaviour and predators on the survival of open passerine nests. J Anim Ecol 71:424–437CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  1. 1.Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgUSA
  2. 2.Smithsonian Conservation Biology Institute, National Zoological ParkSmithsonian InstitutionFront RoyalUSA
  3. 3.Institute of Experimental EcologyUniversity of UlmUlmGermany

Personalised recommendations