Advertisement

Journal of Ornithology

, Volume 152, Issue 2, pp 439–452 | Cite as

Nocturnal exploratory flights, departure time, and direction in a migratory songbird

  • Heiko SchmaljohannEmail author
  • Philipp J. J. Becker
  • Hakan Karaardic
  • Felix Liechti
  • Beat Naef-Daenzer
  • Celia Grande
Original Article

Abstract

Stopover studies have concentrated so far mostly on mechanisms regulating the temporal organisation on the day-to-day level. Taking advantage of the small and isolated island of Helgoland in the North Sea, we investigated the stopover and departure behaviour of a nocturnal migrant by using radio telemetry. Special attention was paid particularly to nocturnal behaviour, their departure times within the night, and departure directions. Here, we show that Northern Wheatears, Oenanthe oenanthe, performed regularly nocturnal exploratory flights on nights before and on departure night, which might be a common behaviour of nocturnal migrants to evaluate meteorological conditions aloft prior to departure. We proposed that migrants being prepared for an endurance flight would depart early in the night within a short time window, whereas individuals departing with low fuel load would be less prone to take off early. Our data, however, could not support this hypothesis. In respect of the migratory direction, there was a significant correlation between departure direction and departure fuel load. Northern Wheatears with high departure fuel loads headed more towards the north than lean migrants, which departed mostly towards the nearest coastline, i.e. east to south. Thus, birds with high fuel loads showed their seasonally appropriate migratory direction irrespective of the ecological barrier ahead, whereas lean birds avoided this direction. To our knowledge, this is the first study that investigates the relationship of fuel load and departure direction in a free-flying songbird.

Keywords

Northern Wheatear Exploratory flight Departure time Departure direction Radio telemetry 

Zusammenfassung

In Studien zum Rastverhalten von Zugvögeln wurden bis jetzt hauptsächlich die Mechanismen untersucht, die die zeitliche Organisation des Rastverhaltens auf der Ebene von Tagen steuern. Wir haben das Rast- und Abzugsverhalten eines Nachtziehers mit Hilfe von Radiotelemetrie untersucht und uns dabei die isolierte Lage der kleinen Nordseeinsel Helgoland zu Nutze gemacht. Besondere Aufmerksamkeit galt dem nächtlichen Verhalten, der Abzugszeit in der Nacht, und der Abzugsrichtung. Hier zeigen wir, dass Steinschmätzer Oenanthe oenanthe regelmäßig nächtliche Erkundungsflüge in Nächten vor und während der Abzugsnacht durchführten, was ein typisches Verhalten von Nachtziehern sein könnte, um die Windbedingungen in verschiedenen Höhen zu testen. Wir nahmen an, dass Zugvögel, die ausreichende Reserven für einen Langstreckenflug hatten, früh in der Nacht während eines relativ engen Zeitfensters abziehen würden, wohingegen Individuen mit geringeren Energiereserven wahrscheinlich früh aber auch spät in der Nacht abziehen. Unsere Ergebnisse konnten diese Hypothese allerdings nicht bestätigen. Zwischen der Abzugsrichtung und den Energievorräten beim Abzug bestand ein signifikanter Zusammenhang. Steinschmätzer mit hohen Energiereserven flogen in nördlichere Richtungen als magere Vögel, die zum größten Teil in Richtung der nächstgelegenen Küste, d.h. nach Osten bis Süden, abzogen. Also zeigten Vögel mit großen Energiereserven ihre jahreszeitlich angemessene Abzugsrichtung unabhängig von der vor ihnen liegenden ökologischen Barriere, während magere Vögel diese Richtung vermieden. Unseres Wissens ist dies die erste Studie, die den Zusammenhang zwischen Energievorräten und Abzugsrichtung an Singvögeln im Freiland untersucht.

Notes

Acknowledgments

We are extremely grateful to Franz Bairlein who helped and supported this project in various ways. Volker Dierschke kindly provided some additional data about the release experiments on Helgoland. Continuous field work was only possible because of important support from Ommo Hüppop, Freimut Schramm, Felix Jachmann, and several volunteers of the Institute of Avian Research “Vogelwarte Helgoland”. Meteorological data were kindly supplied by Deutscher Wetterdienst and the NOAA-CIRES Climate Diagnostics Center, Boulder, CO, USA, from their Web site at http://www.cdc.noaa.gov/. Northern Wheatears were caught, ringed, and radio-tagged under a licence from the Ministry for Agriculture, the Environment and Rural Areas, Schleswig–Holstein, Germany. We also wish to thank Ulric Lund very much for his advice about circular statistics. We are very grateful for valuable comments on this manuscript to Franz Bairlein, Lukas Jenni, and two anonymous referees.

References

  1. Åkesson S, Hedenström A (2000) Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol 47:140–144CrossRefGoogle Scholar
  2. Åkesson S, Alerstam T, Hedenström A (1996a) Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. J Avian Biol 27:95–102CrossRefGoogle Scholar
  3. Åkesson S, Karlsson L, Walinder G, Alerstam T (1996b) Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. Behav Ecol Sociobiol 38:293–302CrossRefGoogle Scholar
  4. Åkesson S, Walinder G, Karlsson L, Ehnbom S (2001) Reed warbler orientation: initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk. Anim Behav 61:181–189PubMedCrossRefGoogle Scholar
  5. Åkesson S, Walinder G, Karlsson L, Ehnbom S (2002) Nocturnal migratory flight initiation in reed warblers Acrocephalus scirpaceus: effect of wind on orientation and timing of migration. J Avian Biol 33:349–357CrossRefGoogle Scholar
  6. Alerstam T (1978) Reoriented bird migration in coastal areas: dispersal to suitable testing grounds? Oikos 30:247–256Google Scholar
  7. Alerstam T (2001) Detours in bird migration. J Theor Biol 209:319–331PubMedCrossRefGoogle Scholar
  8. Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin, pp 331–351Google Scholar
  9. Bairlein F (1994) Manual of field methods. European-African Songbird Migration Network, WilhelmshavenGoogle Scholar
  10. Batschelet E (1981) Circular statistics in biology. Academic, LondonGoogle Scholar
  11. Bolshakov CV, Chernetsov N (2004) Initiation of nocturnal flight in two species of long-distance migrants (Ficedula hypoleuca and Acrocephalus schoenobaenus) in spring: a telemetry study. Avian Ecol Behav 12:63–76Google Scholar
  12. Bolshakov CV, Bulyuk V, Chernetsov N (2003) Spring nocturnal migration of Reed Warblers Acrocephalus scirpaceus: departure, landing and body condition. Ibis 145:106–112CrossRefGoogle Scholar
  13. Bolshakov CV, Chernetsov N, Mukhin A, Bulyuk V, Kosarev VV, Ktitorov P, Leoke D, Tsvey A (2007) Time of nocturnal departures in European robins, Erithacus rubecula, in relation to celestial cues, season, stopover duration and fat score. Anim Behav 74:855–865CrossRefGoogle Scholar
  14. Bruderer B, Boldt A (2001) Flight characteristics of birds: I. Radar measurements of speeds. Ibis 143:178–204CrossRefGoogle Scholar
  15. Bruderer B, Liechti F (1995) Variation in density and height distribution of nocturnal migration in the south of Israel. Isr J Zool 41:477–487Google Scholar
  16. Bruderer B, Liechti F (1999) Bird migration across the Mediterranean. In: Adam N, Slotow R (eds) Proceedings of the 22nd international ornithological congress. BirdLife South Africa, Durban, pp 1983–1999Google Scholar
  17. Bulyuk VN, Tsvey A (2006) Timing of nocturnal autumn migratory departures in juvenile European Robins (Erithacus rubecula) and endogenous and external factors. J Ornithol 147:298–309CrossRefGoogle Scholar
  18. Caccamise DF, Hedin RS (1985) An aerodynamic basis for selecting transmitter loads in birds. Wilson Bull 97:306–318Google Scholar
  19. Cochran WW (1980) Wildlife telemetry. In: Schemnitz S (ed) Wildlife management techniques manual. The Wildlife Society, Washington, DC, pp 507–520Google Scholar
  20. Cochran WW (1987) Orientation and other migratory behaviours of a Swainson’s Thrush followed for 1500 km. Anim Behav 35:927–929CrossRefGoogle Scholar
  21. Cochran WW, Montgomery GG, Graber RR (1967) Migratory flights of Hylocichla thrushes in spring: a radiotelemetry study. Living Bird 6:213–225Google Scholar
  22. Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408PubMedCrossRefGoogle Scholar
  23. Cooke SJ, Hinch SG, Wikelski M, Andrews RD, Kuchel LK, Wolcott TG, Butler PJ (2004) Biotelemetry: a mechanistic approach to ecology. Trends Ecol Evol 19:334–343PubMedCrossRefGoogle Scholar
  24. Coppack T, Becker SF, Becker PJJ (2008) Circadian flight schedules in night-migrating birds caught on migration. Biol Lett 4:619–622PubMedCrossRefGoogle Scholar
  25. Crawley MJ (2005) Statistical computing. An introduction to data analysis using S-Plus. Wiley, New YorkGoogle Scholar
  26. Delingat J, Dierschke V, Schmaljohann H, Mendel B, Bairlein F (2006) Daily stopovers as optimal migration strategy in a long-distance migrating passerine: the Northern Wheatear. Ardea 94:593–605Google Scholar
  27. Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in northern wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078CrossRefGoogle Scholar
  28. Delingat J, Dierschke V, Schmaljohann H, Bairlein F (2009) Diurnal patterns of body mass change during stopover in a migrating songbird. J Avian Biol 40:625–634CrossRefGoogle Scholar
  29. Deutschlander ME, Muheim R (2009) Fuel reserves affect migratory orientation of thrushes and sparrows both before and after crossing an ecological barrier near their breeding grounds. J Avian Biol 40:1–5CrossRefGoogle Scholar
  30. Dierschke V, Delingat J (2003) Stopover of Northern Wheatears Oenanthe oenanthe at Helgoland: where do the migratory routes of Scandinavian and Nearctic birds join and split? Ornis Svec 13:53–61Google Scholar
  31. Dierschke V, Mendel B, Schmaljohann H (2005) Differential timing of spring migration in Northern Wheatears Oenanthe oenanthe: hurried males or weak females? Behav Ecol Sociobiol 57:470–480CrossRefGoogle Scholar
  32. Erni B, Liechti F, Underhill LG, Bruderer B (2002) Wind and rain govern the intensity of nocturnal bird migration in central Europe—a log-linear regression analysis. Ardea 90:155–166Google Scholar
  33. Fransson T, Weber TP (1997) Migratory fueling in blackcaps (Sylvia atricapilla) under perceived risk of predation. Behav Ecol Sociobiol 41:75–80CrossRefGoogle Scholar
  34. Fuchs T, Haney A, Jechura TJ, Moore FR, Bingman V (2006) Daytime naps in night-migrating birds: behavioural adaptation to seasonal sleep deprivation in the Swainson’s thrush, Catharus ustulatus. Anim Behav 72:951–958CrossRefGoogle Scholar
  35. Gauthreaux SA, Belser CG (1999) Bird migration in the region of the Gulf of Mexico. In: Adam N, Slotow R (eds) Proceedings of the 22nd international ornithological congress. BirdLife South Africa, Durban, pp 1931–1947Google Scholar
  36. Goyman W, Spina F, Ferri A, Fusani L (2010) Body fat influences departure from stopper sites in migratory birds: evidence from whole-island telemetry. Biol Lett. 6:478–481Google Scholar
  37. Gwinner E (1990) Circannual rhythms in bird migration: control of temporal patterns and interactions with photoperiod. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin, pp 257–268Google Scholar
  38. Gwinner E, Wiltschko W (1978) Endogenously controlled changes in migratory direction of the garden warbler, Sylvia borin. J Comp Physiol 125:267–273CrossRefGoogle Scholar
  39. Hedenström A (2008) Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos Trans R Soc Lond B 363:287–299CrossRefGoogle Scholar
  40. Hedenström A, Alerstam T (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189:227–234PubMedCrossRefGoogle Scholar
  41. Hegedüs R, Åkesson S, Horváth G (2007) Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies. J Opt Soc Am A 24:2347–2356CrossRefGoogle Scholar
  42. Helbig AJ, Berthold P, Wiltschko W (1989) Migratory orientation of blackcaps (Sylvia atricapilla): population-specific shifts of direction during the autumn migration. Ethology 82:307–315CrossRefGoogle Scholar
  43. Houston AI (1998) Models of optimal avian migration: state, time and predation. J Avian Biol 29:395–404CrossRefGoogle Scholar
  44. Irvine RJ, Leckie F, Redpath SM (2007) Cost of carrying radio transmitters: a test with racing pigeons Columba livia. Wildlife Biol 13:238–243CrossRefGoogle Scholar
  45. Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics. World Scientific, SingaporeCrossRefGoogle Scholar
  46. Jenni L, Schaub M (2003) Behavioural and physiological reactions to environmental variation in bird migration: a review. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 155–171Google Scholar
  47. Kaiser A (1993) A new multi-category classification of subcutaneous fat deposits of songbirds. J Field Ornithol 64:246–255Google Scholar
  48. Koch JC (1934) Vogelzug unter Einfluss von Leitlinie und Windrichtung. Vogelzug 5:45–52Google Scholar
  49. Komenda-Zehnder S, Liechti F, Bruderer B (2002) Is reverse migration a common feature of nocturnal bird migration?—an analysis of radar data from Israel. Ardea 90:325–334Google Scholar
  50. Ktitorov P, Bairlein F, Dubinin M (2008) The importance of landscape context for songbirds on migration: body mass gain is related to habitat cover. Landscape Ecol 23:169–179CrossRefGoogle Scholar
  51. Lank DB, Ydenberg RC (2003) Death and danger at migratory stopovers: problems with “predation risk”. J Avian Biol 34:225–228CrossRefGoogle Scholar
  52. Liechti F (2006) Birds: blowin’ by the wind? J Ornithol 147:202–211CrossRefGoogle Scholar
  53. Liechti F, Bruderer B (1995) Directions, speed, and composition of nocturnal bird migration in the south of Israel. Isr J Zool 41:510–515Google Scholar
  54. Liechti F, Bruderer B (1998) The relevance of wind for optimal migration theory. J Avian Biol 29:561–568CrossRefGoogle Scholar
  55. Liechti F, Steuri T, López-Jurado C, Ribas PLD, Reis MA, Bruderer B (1997) Nocturnal spring migration on Mallorca—schedules of departure and passage. Ardeola 44:207–213Google Scholar
  56. Lindström Å (1990) The role of predation risk in stopover habitat selection in migrating bramblings, Fringilla montifringilla. Behav Ecol 1:102–106CrossRefGoogle Scholar
  57. Lindström Å, Alerstam T (1986) The adaptive significance of reoriented migration of chaffinch Fringilla coelebs and bramblings F. montifringilla during autumn in southern Sweden. Behav Ecol Sociobiol 19:417–424CrossRefGoogle Scholar
  58. Moore FR (1987) Sunset and the orientation behaviour of migrating birds. Biol Rev 62:65–86CrossRefGoogle Scholar
  59. Moore FR (1994) Resumption of feeding under risk of predation. Anim Behav 48:975–977CrossRefGoogle Scholar
  60. Moore FR, Aborn DA (1996) Time of departure by Summer Tanagers (Piranga rubra) from a stopover site following spring trans-gulf migration. Auk 113:949–952Google Scholar
  61. Moore FR, Yong W (1991) Evidence of food-based competition among passerine migrants during stopover. Behav Ecol Sociobiol 28:85–90CrossRefGoogle Scholar
  62. Morton ML (1967) Diurnal feeding patterns in white-crowned sparrows Zonotrichia leucophrys gambelii. Condor 69:491–512CrossRefGoogle Scholar
  63. Mouritsen H, Feenders G, Liedvogel M, Kropp W (2004) Migratory birds use head scans to detect the direction of the earth’s magnetic field. Curr Biol 14:1946–1949PubMedCrossRefGoogle Scholar
  64. Muheim R, Moore FR, Phillips JB (2006a) Calibration of magnetic and celestial compass cues in migratory birds—a review of cue-conflict experiments. J Exp Biol 209:2–17PubMedCrossRefGoogle Scholar
  65. Muheim R, Phillips JB, Åkesson S (2006b) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839PubMedCrossRefGoogle Scholar
  66. Muheim R, Åkesson S, Moore FR (2007) Magnetic compass of migratory Savannah sparrows is calibrated by skylight polarization at sunrise and sunset. J Ornithol 148(Suppl 2):485–494CrossRefGoogle Scholar
  67. Mukhin A, Kosarev V, Ktitorov P (2005) Nocturnal life of young songbirds well before migration. Proc R Soc Lond B 272:1535–1539CrossRefGoogle Scholar
  68. Naef-Daenzer B (1993) A new transmitter for small animals and enhanced methods of home-range analysis. J Wildl Manage 57:680–689CrossRefGoogle Scholar
  69. Naef-Daenzer B (2007) An allometric function to fit leg-loop harnesses to terrestrial birds. J Avian Biol 38:404–407Google Scholar
  70. Naef-Daenzer B, Widmer F, Nuber M (2001) A test for effects of radio-tagging on survival and movements of small birds. Avian Sci 1:15–23Google Scholar
  71. Naef-Daenzer B, Früh D, Stalder M, Wetli P, Weise E (2005) Miniaturization (0.2 g) and evaluation of attachment techniques of telemetry transmitters. J Exp Biol 208:4063–4068PubMedCrossRefGoogle Scholar
  72. Odum EP (1963) Lipid levels in birds preparing to cross the Sahara. Ibis 105:109–111Google Scholar
  73. Palmgren P (1949) On the diurnal rhythm of activity and rest in birds. Ibis 91:562–576Google Scholar
  74. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  75. Rabøl J (1969) Reversed migration as the cause of westward vagrancy by four Phylloscopus warblers. Br Birds 62:89–92Google Scholar
  76. Ramenofsky M, Agatsuma R, Barga M, Cameron R, Harm J, Landys M, Ramfar T (2003) Migratory behaviour: new insights from captive studies. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 97–110Google Scholar
  77. Rappole JH, Tipton AR (1990) New harness design for attachment of radio transmitters to small passerines. J Field Ornithol 62:335–337Google Scholar
  78. Rappole JH, Warner DW (1976) Relationships between behaviour, physiology and weather in avian transients at a migration site. Oecologia 26:193–212CrossRefGoogle Scholar
  79. Rattenborg NC, Mandt BH, Obermeyer WH, Winsauer PJ, Huber R, Wikelski M, Benca RM (2004) Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrus gambelii). PLoS Biol 7:924–936Google Scholar
  80. Richardson WJ (1982) Northeastward reverse migration of birds over Nova Scotia, Canada, in Autumn. Behav Ecol Sociobiol 10:193–206CrossRefGoogle Scholar
  81. Richardson WJ (1990) Timing of bird migration in relation to weather: updated review. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 78–101Google Scholar
  82. Rozenberg GV (1966) Twilight. A study in atmospheric optics. Plenum, New YorkGoogle Scholar
  83. Sandberg R (1994) Interaction of body condition and magnetic orientation in autumn migrating robins, Erithacus rubecula. Anim Behav 47:679–686CrossRefGoogle Scholar
  84. Sandberg R (2003) Stored fat and the migratory orientation of birds. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 515–525Google Scholar
  85. Sandberg R, Moore FR (1996) Migratory orientation of red-eyed vireos, Vireo olivaceus, in relation to energetic condition and ecological context. Behav Ecol Sociobiol 39:1–10CrossRefGoogle Scholar
  86. Sandberg R, Moore FR, Bäckman J, Löhmus M (2002) Orientation of nocturnally migrating Swainson’s thrush at dawn and dusk: importance of energetic condition and geomagnetic cues. Auk 119:201–209CrossRefGoogle Scholar
  87. Schaub M, Liechti F, Jenni L (2004) Departure of migrating European robins, Erithacus rubecula, from a stopover site in relation to wind and rain. Anim Behav 67:229–237CrossRefGoogle Scholar
  88. Schaub M, Jenni L, Bairlein F (2008) Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site. Behav Ecol 19:657–666CrossRefGoogle Scholar
  89. Schmaljohann H, Dierschke V (2005) Optimal bird migration and predation risk: a field experiment with northern wheatears Oenanthe oenanthe. J Anim Ecol 74:131–138CrossRefGoogle Scholar
  90. Schmaljohann H, Liechti F, Bruderer B (2007) Songbird migration across the Sahara—the non-stop hypothesis rejected!. Proc R Soc Lond B 274:735–739CrossRefGoogle Scholar
  91. Schwilch R, Piersma T, Holmgren NMA, Jenni L (2002) Do migratory birds need a nap after a long non-stop flight? Ardea 90:149–154Google Scholar
  92. Sillett TS, Holmes RT (2002) Variation in survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol 71:296–308CrossRefGoogle Scholar
  93. Svensson L (1992) Identification guide to European passerines. Mirstatryck, StockholmGoogle Scholar
  94. Tsvey A, Bulyuk VN, Kosarev V (2007) Influence of body condition and weather on departures of first-year European robins, Erithacus rubecula, form an autumn migratory stopover site. Behav Ecol Sociobiol 61:1665–1674CrossRefGoogle Scholar
  95. von Haartman L (1945) Umschlagende Zugrichtung beim Buchfinken, Fingilla c. coelebs L., im Herbst. Ornis Fenn 22:10–16Google Scholar
  96. von Haartman L, Bergman G, Koskimies J (1946) Beobachtungen über umschlagende Zugrichtung der Bachstelze, Motacilla alba L., im Herbst. Ornis Fenn 23:50–62Google Scholar
  97. Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704PubMedCrossRefGoogle Scholar
  98. Zehnder S, Åkesson S, Liechti F, Bruderer B (2002) Observation of free-flying nocturnal migrants at Falsterbo: occurrence of reverse flight directions in autumn. Avian Sci 2:103–113Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  • Heiko Schmaljohann
    • 1
    Email author
  • Philipp J. J. Becker
    • 1
  • Hakan Karaardic
    • 1
    • 2
  • Felix Liechti
    • 3
  • Beat Naef-Daenzer
    • 3
  • Celia Grande
    • 1
  1. 1.Institute of Avian Research, “Vogelwarte Helgoland”WilhelmshavenGermany
  2. 2.Department of Biology, Art & Science FacultyAkdeniz UniversityAntalyaTurkey
  3. 3.Swiss Ornithological InstituteSempachSwitzerland

Personalised recommendations