Journal of Ornithology

, Volume 152, Issue 2, pp 383–395 | Cite as

Morphometrics and stable isotopes differentiate populations of Northern Wheatears (Oenanthe oenanthe)

  • Julia Delingat
  • Keith A. Hobson
  • Volker Dierschke
  • Heiko Schmaljohann
  • Franz Bairlein
Original Article


Linking events of breeding, wintering and stopover areas has important ecological and conservation implications for migratory species. To find a tool to connect these different events in a long-distance migrating songbird, the Northern Wheatear Oenanthe oenanthe, we applied a discriminant analysis based on morphometrics and analysed stable isotope values (δ13C, δ15N, δD) in feathers. Morphometric differences were additionally analysed with respect to wing shape as an adaptation to migration routes. Discriminant analysis 100% separated a group of long-winged migrants passing the German offshore island of Helgoland from Icelandic and Norwegian breeding birds, as well as from Northern Wheatears passing the Baltic Sea coast on migration. This clear assignment suggests a Greenlandic origin of these long-winged Northern Wheatears. The most likely Greenlandic origin was further supported by depleted δD values in feathers of these birds grown on the breeding grounds. We found a relatively high proportion of presumed Greenlandic birds on Helgoland and especially on Fair Isle (Scotland) during spring migration. Morphometric differences were based mainly on wing morphology and could be successfully connected with migration routes. Presumed Greenlandic Northern Wheatears showed more pointed wings than birds from other European breeding areas. Such wings might be natural selection’s solution for the long obligatory non-stop flights during the Atlantic crossings.


Northern Wheatear Population differentiation Stable isotopes Morphometrics Wing shape 


Für ziehende Tierarten hat der Zusammenhang von Ereignissen in Brut-, Winter- und Rastgebieten wichtige Konsequenzen für ökologische Aspekte und den Artenschutzes. Um im Falle eines typischen Langstreckenziehers, des Steinschmätzers (Oenanthe oenanthe), ein Werkzeug zu finden, um Ereignisse in den verschiedenen Aufenthaltsgebieten verbinden und verschiedene Populationen ansprechen zu können, haben wir eine Diskriminanzanalyse aufgrund von morphometrischen Daten durchgeführt und Stabile Isotope (δ13C, δ15N, δD) aus Federn analysiert. Morphometrische Unterschiede wurden zusätzlich in Hinsicht auf Adaption der Flügelform aufgrund verschiedener Zugrouten untersucht. Anhand der Diskriminanzanalyse ließ sich eine Gruppe von besonders langflügeligen Durchziehern auf Helgoland vollständig sowohl von Isländischen und Norwegischen Steinschmätzern unterscheiden, als auch von Steinschmätzer die auf dem Zug an der baltischen Ostseeküste erscheinen. Diese klare Abgrenzung lässt einen Grönländischen Ursprung dieser langflügeligen Steinschmätzer vermuten. Eine Vermutung, die weiterhin durch deutlich abgereicherte δD Werte in Federn, die im Brutgebiet gewachsen waren, unterstützt wird. Wir fanden während des Frühjahrszuges einen relativ hohen Anteil an vermutlich Grönländischen Vögeln auf Helgoland und besonders auf Fair Isle (Schottland). Morphometrische Unterschiede basierten hauptsächlich auf Unterschieden in der Flügelform und konnten mit den unterschiedlich Anforderungen während des Zuges in Verbindung gesetzt werden. Steinschmätzer mit vermutlich Grönländischen Ursprung zeigten spitzere Flügel als Vögel von anderen Europäischen Brutgebieten. Diese Flügel scheinen das Ergebnis natürlicher Selektion innerhalb dieser Population zu sein, die besonders lange nonstop Flüge zur Überquerung des Nordost-Atlantiks bewältigen muss.



This research was financially supported by the Deutsche Forschungsgemeinschaft (BA 816/15-1) and the European Science foundation, ESF-BIRD Scientific Program. We are grateful to S. Jaquier, M. Rebke, A. Walter, R. Morgenstern and B. Mendel for field assistance at Helgoland. Many thanks to C. Bolshakov and the Biological Station Rybachy, to A. Petersen and the Icelandic Institute of Natural History, to D. Shaw and the Fair Isle Bird Observatory, J. Cortez, C. Peréz and P. Rocca from the Gibraltar Ornithological and Natural History Society and F. Spina for supporting fieldwork. Bird trapping and measurements comply with the current laws of the country in which they were performed.


  1. Alerstam T (1990) Bird migration. Cambridge University Press, CambridgeGoogle Scholar
  2. Alerstam T (2001) Detours in bird migration. J Theor Biol 209:319–331PubMedCrossRefGoogle Scholar
  3. Andersson A, Follestad A, Nilsson L, Persson H (2001) Migration patterns of Nordic greylag geese Anser anser. Ornis Svec 11:19–58Google Scholar
  4. Backhaus K, Erichson B, Plinke W, Weiber R (1990) Multivariate analyse-methoden. Eine anwendungsorientierte Einführung, 6th edn. Springer, BerlinGoogle Scholar
  5. Bairlein F (2001) Results of bird ringing in the study of migration routes and behaviour. Ardea 89:7–19Google Scholar
  6. Bakken V, Runde O, Tjørve E (2006) Norsk Ringmerkingsatlas, vol 2. Stavanger Museum, StavangerGoogle Scholar
  7. Bensch S, Andersson T, Åkesson S (1999) Morphological and molecular variation across a migratory divide in willow warblers, Phylloscopus trochilus. Evolution 53:1925–1935CrossRefGoogle Scholar
  8. Berthold P (1993) Bird migration: a general survey. Oxford University Press, Oxford, New York, TokyoGoogle Scholar
  9. Boulet M, Norris DR (2006) The past and present of migratory connectivity. Ornithol Monogr 61:1–13CrossRefGoogle Scholar
  10. Boulet M, Gibbs HL, Hobson KA (2006) Integrated analysis of genetic, stable isotope, and banding data reveal migratory connectivity and flyways in the northern yellow warbler (Dendroica petechia; aestiva group). Ornithol Monogr: 29–78Google Scholar
  11. Bowen GJ (2009) The online isotopes in precipitation calculator, version 2.2.
  12. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348PubMedCrossRefGoogle Scholar
  13. Chamberlain CP, Blum JD, Holmes RT, Feng X, Sherry TW, Graves GR (1997) The use of isotope tracers for identifying populations of migratory birds. Oecologia 109:132–141CrossRefGoogle Scholar
  14. Chisholm BS, Nelson DE, Schwarcz HP (1982) Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216:1131–1132PubMedCrossRefGoogle Scholar
  15. Clark RG, Hobson KA, Wassenaar LI (2006) Geographic variation in the isotopic (δD, δ13C, δ15N, δ34S) composition of feathers and claws from lesser scaup and northern pintail: implications for studies of migratory connectivity. Can J Zool 84:1395–1401CrossRefGoogle Scholar
  16. Conder P (1989) The wheatear. Christopher Helm, LondonGoogle Scholar
  17. Copete JL, Mariné R, Bigas D, Martínez-Vilata A (1999) Differences in wing shape between sedentary and migratory reed buntings Emberiza schoeniculus. Bird Study 46:100–103CrossRefGoogle Scholar
  18. Cramp S (1988) The birds of the western Palearctic, vol 5. Oxford University Press, OxfordGoogle Scholar
  19. Delingat J, Dierschke V, Schmaljohann H, Mendel B, Bairlein F (2006) Daily stopovers as optimal migration strategy in a long distance migrating passerine: the northern wheatear (Oenanthe oenanthe). Ardea 94:593–605Google Scholar
  20. Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in northern wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078CrossRefGoogle Scholar
  21. Dierschke V, Delingat J (2001) Stopover behaviour and departure decison of northern wheatears, Oenanthe oenanthe, facing different onward non-stop flight distances. Behav Ecol Sociobiol 50:535–545CrossRefGoogle Scholar
  22. Dierschke V, Delingat J (2003) Stopover of northern wheatears Oenanthe oenanthe at Helgoland: where do the migratory routes of Scandinavian and Nearctic birds join and split? Ornis Svec 13:53–61Google Scholar
  23. Dierschke V, Schmaljohann H, Mendel B (2005) Differential timing of spring migration in northern wheatears: hurried males or weak females? Behav Ecol Sociobiol 57:470–480CrossRefGoogle Scholar
  24. Drost R (1930) Oenanthe oenanthe schiöleri Salom. als Durchzügler von Helgoland. Der Vogelzug 1:181–182Google Scholar
  25. Dymond JN (1991) The birds of Fair Isle. Self-publishedGoogle Scholar
  26. Erni B, Liechti F, Bruderer B (2005) The role of wind in passerine autumn migration between Europe and Africa. Behav Ecol 16:732–740CrossRefGoogle Scholar
  27. Fiedler W (2005) Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Ann N Y Acad Sci 1046:253–263PubMedCrossRefGoogle Scholar
  28. Fransson T (1995) Timing and speed of migration in North and West European populations of Sylvia warblers. J Avian Biol 26:39–48CrossRefGoogle Scholar
  29. Fridolfsson A-K, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  30. Fuller MR, Seegar WS, Schueck LS (1998) Routes and travel rates of migrating peregrine falcons Falco peregrinus and Swainson’s hawks Buteo swainsoni in the Western Hemisphere. J Avian Biol 29:433–440CrossRefGoogle Scholar
  31. Glutz U, Bauer HG (1988) Handbuch der Vögel Mitteleuropas. II/1. Aula, WiesbadenGoogle Scholar
  32. Godfrey W (1986) The birds of Canada. National Museum of Canada, Ottawa, CanadaGoogle Scholar
  33. Gómez-Díaz E, González-Solís J (2007) Geographic assignment of seabirds to their origin: combining morphologic, genetic, and biogeochemical analyses. Ecol Appl 17:1484–1498PubMedCrossRefGoogle Scholar
  34. Haig SM, Gratto-Trevor CL, Mullins TD, Colwell MA (1997) Population identification of western hemisphere shorebirds throughout the annual cycle. Mol Ecol 6:413–427CrossRefGoogle Scholar
  35. Hake M, Kjellén N, Alerstam T (2001) Satellite tracking of Swedish ospreys Pandion haliaetus: autumn migration routes and orientation. J Avian Biol 32:47–56CrossRefGoogle Scholar
  36. Hantge E, Schmidt-König K (1958) Vom Herbstzug des Steinschmätzers (Oenanthe oenanthe) auf Wangerooge und Langeoog. J Ornithol 99:142–159CrossRefGoogle Scholar
  37. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326CrossRefGoogle Scholar
  38. Hobson KA, Wassenaar LI (1997) Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109:142–148CrossRefGoogle Scholar
  39. Hobson KA, Wassenaar LI (2008) Tracking animal migration with stable isotopes. Academic/Elsevier, AmsterdamGoogle Scholar
  40. Hobson KA, Hughes KD, Ewins PJ (1997) Using stable isotopes to identify endogenous and exogenous sources of nutrients in eggs of migratory birds: applications to Great Lakes contaminants research. Auk 114:478Google Scholar
  41. Jenni L, Jenni-Eiermann S (1987) Der Herbstzug der Gartengrasmücke Sylvia borin in der Schweiz. Ornithol Beob 84:206Google Scholar
  42. Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic, LondonGoogle Scholar
  43. Kelly JF, Atudorei V, Sharp ZD, Finch DM (2002) Insights into Wilson’s warbler migration from analyses of hydrogen stable-isotope ratios. Oecologia 130:216–221Google Scholar
  44. Kipp FA (1958) Zur Geschichte des Vogelzuges auf der Grundlage der Flügelanpassung. Vogelwarte 19:233–242Google Scholar
  45. Kipp FA (1959) Der Handflügel-Index als flugbiologisches Maß. Vogelwarte 20:77–86Google Scholar
  46. Larson KW, Hobson KA (2009) Assignment to breeding and wintering grounds using stable isotopes: a comment on lessons learned by Rocque et al. J Ornithol 150:709–712CrossRefGoogle Scholar
  47. Leisler B, Winkler H (2003) Morphological consequences of migration in passerines. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 175–185Google Scholar
  48. Lockwood R, Swaddle JP, Rayner JMV (1998) Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J Avian Biol 29:273–292CrossRefGoogle Scholar
  49. Marchetti K, Price T, Richman A (1995) Correlates of wing morphology with foraging behaviour and migration distance in the genus Phylloscopus. J Avian Biol 26:177–181CrossRefGoogle Scholar
  50. Marquiss M, Hobson KA, Newton I (2008) Stable isotope evidence for different regional source areas of common crossbill Loxia curvirostra irruptions into Britain. J Avian Biol 39:30–34CrossRefGoogle Scholar
  51. Martell MS, Henny CJ, Nye PE, Solensky MJ (2001) Fall migration routes, timing, and wintering sites of North American ospreys as determined by satellite telemetry. Condor 103:715–724CrossRefGoogle Scholar
  52. Mazerolle DF, Hobson KA, Wassenaar LI (2005) Stable isotope and band-encounter analyses delineate migratory patterns and catchment areas of white-throated sparrows at a migration monitoring station. Oecologia 144:541–549PubMedCrossRefGoogle Scholar
  53. Mizutani H (1990) Carbon isotope ratio of feathers reveals feeding behavior of cormorants. Auk 107:400–437Google Scholar
  54. Mönkkönen M (1995) Do migrant birds have more pointed wings? A comparative study. Evol Ecol 9:520–528CrossRefGoogle Scholar
  55. Ottosson U, Sandberg R, Petterson J (1990) Orientation cage and release experiments with migratory wheatears (Oenanthe oenanthe) in Scandinavia and Greenland: the importance of visual cues. Ethology 86:57–70CrossRefGoogle Scholar
  56. Panov EN (2005) Wheatears of the palaearctic. Ecology, behaviour and evolution of the genus Oenanthe. Pensoft, SofiaGoogle Scholar
  57. Ramos MA, Warner DW (1980) Analysis of North American subspecies of migrant birds wintering in Los Tuxtlas, southern Veracruz, Mexico. In: A Keast, Morton ES (eds) Migrant birds in the neotropics: ecology, behavior, conservation. Smithonian Institution Press, Washington, DC, pp 173–180Google Scholar
  58. Rubenstein DR, Chamberlain CP, Holmes RT, Ayres MP, Waldbauer JR, Graves GR, Tuross NC (2002) Linking breeding and wintering ranges of a migratory songbird using stable isotopes. Science 295:1062–1065PubMedCrossRefGoogle Scholar
  59. Sachs L (1984) Angewandte Statitstik, Anwendung statistische Methoden, 6th edn. Springer, BerlinGoogle Scholar
  60. Salomonsen F (1934) La variation géographique et la migration de la traquet motteux. L′oiseau 2:222–225Google Scholar
  61. Salomonsen F (1967) Fuglene på Grønland.København. Rhodos: 309–311Google Scholar
  62. Salzmann W (1930) Oenanthe oenanthe schiöleri Salom. als Durchzügler von Helgoland. Der Vogelzug 1(4):182–183Google Scholar
  63. Schmaljohann H, Dierschke V (2005) Optimal migration and predation risk: a field experiment with northern wheatears (Oenanthe oenanthe). J Anim Ecol 74:131–138CrossRefGoogle Scholar
  64. Snow DW (1953) The migration of the Greenland wheatear. Ibis 95:377–378Google Scholar
  65. SPSS (2006) SPSS version 15.01. 2006. Chicago, ILGoogle Scholar
  66. Stutchbury BJM, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V (2009) Tracking long-distance songbird migration by using geolocators. Science 323:869CrossRefGoogle Scholar
  67. Svensson L (1992) Identification guide to European passerines, 4th edn. Mirstatryck, StockholmGoogle Scholar
  68. Taylor M, Seago M, Allard P, Dorling D (1999) The birds of Norfolk. Christopher Helm, LondonGoogle Scholar
  69. Tellería JL, Carbonell R (1999) Morphometric variation of five Iberian blackcap Sylvia atricapilla populations. J Avian Biol 30:63–71CrossRefGoogle Scholar
  70. Tellería JL, Perez-Tris J, Carbonell R (2001) Seasonal changes in abundance and flight-related morphology reveal different migration patterns in Iberian forest passerines. Ardeola 48:27–46Google Scholar
  71. Wassenaar LI (2008) An introduction to light stable isotopes for use in terrestrial animal migration studies. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes, 1st edn. Academic/Elsevier, Amsterdam, pp 21–44CrossRefGoogle Scholar
  72. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ Health Stud 39:211–217PubMedCrossRefGoogle Scholar
  73. Wassenaar LI, Hobson KA (2006) Stable-hydrogen isotope heterogeneity in keratinous materials: mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun Mass Spectrom 20:2505–2510PubMedCrossRefGoogle Scholar
  74. Wenink PW, Baker AJ (1996) Mitochondrial DNA lineages in composite flocks of migratory and wintering dunlins (Calidris alpina). Auk 113:744–756Google Scholar
  75. Yerkes T, Hobson KA, Wassenaar LI, Macleod R, Coluccy JM (2008) Stable isotopes (δD, δ13C, δ15N) reveal associations among geographic location and condition of Alaskan northern pintails. J Wildl Manage 72:715–725CrossRefGoogle Scholar
  76. Zink G (1973) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel. Vogelwarte Radolfzell, RadolfzellGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  • Julia Delingat
    • 1
  • Keith A. Hobson
    • 2
  • Volker Dierschke
    • 1
  • Heiko Schmaljohann
    • 1
  • Franz Bairlein
    • 1
  1. 1.Institute for Avian ResearchWilhelmshavenGermany
  2. 2.Environment CanadaSaskatoonCanada

Personalised recommendations