Journal of Ornithology

, Volume 152, Issue 1, pp 179–192 | Cite as

Winter habitat selection and conservation of Hazel Grouse (Bonasa bonasia) in mountain forests

Original Article

Abstract

The Hazel Grouse (Bonasa bonasia) has suffered from habitat loss due to changes in forestry practices in many regions of Europe. The widespread conversion of structurally heterogeneous to uniform, single-layered stands has caused many of its populations to decline. The trend in multi-functional forestry towards more dynamic processes and natural rejuvenation offers a unique opportunity to restore many habitats of Hazel Grouse in core areas of its actual distribution. As the Alps represent a stronghold of Hazel Grouse distribution in Central Europe, we aimed to determine the species–habitat relationship in mountain forests. We assessed the distribution and characteristics of Hazel Grouse habitat in a forest reserve of the Swiss Alps. Abiotic, structural and vegetation characteristics were investigated at the small scale, and abiotic and forest inventory data at the large scale. We compared the habitat characteristics of used and unused forest stands with a raster system consisting of bird presence and absence cells by applying a logistic regression. Hazel Grouse preferred stands with high proportions of tall rowans, forest edges, and a dense shrub layer at the small scale. Rowans had the strongest influence on Hazel Grouse occurrence. At the large scale, Hazel Grouse preferred forests with large proportions of alder and a diverse mosaic of canopy closure and stand structure. For 44% of the study area, the large-scale model predicted a probability of Hazel Grouse occurrence of more than 0.5. Our data supports the recommendation that the availability of suitable habitat for Hazel Grouse can be increased by natural reforestation of tree-fall gaps and stands with bark beetle infestation, as well as by enhancing the proportion of old-growth stands. Both measures will augment the shrub cover and number of rowan trees, two essential habitat and food resources for Hazel Grouse in mountain forests.

Keywords

Alps Bonasa bonasia Food plants Habitat suitability model Multi-species management Switzerland 

References

  1. Storch I (compiler) (2000) Grouse: status survey and conservation action plan 2000–2004 (WPA/BirdLife/SSC Grouse Specialist Group). IUCN/World Pheasant Association, Gland/ReadingGoogle Scholar
  2. Åberg J, Jansson G, Swenson JE, Angelstam P (1995) The effect of matrix on the occurrence of hazel grouse (Bonasa bonasia) in isolated habitat fragments. Oecologia 103:265–269CrossRefGoogle Scholar
  3. Åberg J, Swenson JE, Angelstam P (2003) The habitat requirements of hazel grouse (Bonasa bonasia) in managed boreal forest and applicability of forest stand descriptions as a tool to identify suitable patches. Forest Ecol Manag 175:437–444CrossRefGoogle Scholar
  4. Akaike H (1974) A new look at statistical-model identification. IEEE Trans Automat Contr AC 19:716–723CrossRefGoogle Scholar
  5. Andrén H, Delin A, Seiler A (1997) Population response to landscape changes depends on specialization to different landscape elements. Oikos 80:193–196CrossRefGoogle Scholar
  6. Arthur SM, Manly BFJ, McDonald LL, Garner GW (1996) Assessing habitat selection when availability changes. Ecology 77:215–227CrossRefGoogle Scholar
  7. Bergmann H-H, Klaus S, Müller F, Scherzinger W, Swenson JE, Wiesner J (1996) Die Haselhühner – 4. überarbeitete Auflage. Die Neue Brehm-Bücherei Bd.77. Westarp Wissenschaften, MagdeburgGoogle Scholar
  8. Bernard-Laurent A, Magnani Y (1994) Statut, évolution et facteurs limitant les populations de gelinotte des bois (Bonasa bonasia) en France: synthese bibliographique. Gibier Faune Sauvage Game Wildl 11:5–40Google Scholar
  9. Blake JG, Hoppes WG (1986) Influence of resource abundance on use of tree-fall gaps by birds in an isolated woodlot. Auk 103:328–340Google Scholar
  10. Blattner M (1998) Der Arealschwund des Haselhuhns Bonasa bonasia in der Nordwestschweiz. Ornithol Beob 95:11–38Google Scholar
  11. Block WM, Brennan LA (1993) The habitat concept in ornithology: theory and applications. Current Ornithol 11:35–91Google Scholar
  12. Bollmann K (2006) Das Auerhuhn: Imposant und gefährdet. In: Ehrbar R (ed) Veränderungen als Chance für den Wald—Ortsgemeinde Amden. Sophie und Karl Binding Stiftung, Basel, pp 200–221Google Scholar
  13. Bollmann K, Keller V, Müller W, Zbinden N (2002) Prioritäre Vogelarten für Artenförderungsprogramme in der Schweiz. Ornithol Beob 99:301–320Google Scholar
  14. Bollmann K, Graf RF, Debrunner R, Suter W (2004) The capercaillie as indicator of high species richness: potential and limitations of the umbrella species concept. In: Smithers R (ed) Proc 12th Annual IALE Conf on Landscape Ecology of Trees and Forests, Cirencester, UK, 21–24 June 2004, pp 200–207Google Scholar
  15. Bollmann K, Weibel P, Graf RF (2005) An analysis of central Alpine Capercaillie spring habitat at the forest stand scale. Forest Ecol Manag 215:307–318CrossRefGoogle Scholar
  16. Bollmann K, Bergamini A, Senn-Irlet B, Nobis M, Duelli P, Scheidegger C (2009) Konzepte, Instrumente und Herausforderungen bei der Förderung der Biodiversität im Wald. Schweiz Z Forstw 160:53–67CrossRefGoogle Scholar
  17. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Modell 157:281–300CrossRefGoogle Scholar
  18. Brändli U-B (2000) Waldzunahme in der Schweiz—gestern und morgen. Inf bl Forsch Bereiches Landsch WSL Birmensdorf 45:1–4Google Scholar
  19. Brändli U-B (ed) (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Eidg Forsch anstalt Wald, Schnee Landschaft WSL, Birmensdorf, Bundesamt Umwelt BAFU, BernGoogle Scholar
  20. Brülisauer A (2006) Die Moore von Amden. In: Ehrbar R (ed) Veränderungen als Chance für den Wald—Ortsgemeinde Amden. Sophie und Karl Binding Stiftung, Basel, pp 76–87Google Scholar
  21. Burfield I, van Bommel F (eds) (2004) Birds in Europe: populations estimates, trends and conservation status. BirdLife Int, CambridgeGoogle Scholar
  22. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Physiol Measurem 20:37–46CrossRefGoogle Scholar
  23. De Francesci PF (1994) Status, geographical distribution and limiting factors of hazel grouse in Italy. Gibier Faune Sauvage Game Wildl 11:141–160Google Scholar
  24. Ehrbar R (ed) (2006) Veränderungen als Chance für den Wald—Ortsgemeinde Amden. Sophie und Karl Binding Stiftung, BaselGoogle Scholar
  25. Ehrbar R, Bollmann K, Mollet P (2010) Ein Sonderwaldreservat für das Auerhuhn—das Beispiel Amden (Kanton St. Gallen). Schweiz Z Forstwes (in press)Google Scholar
  26. Eiberle K, Koch N (1975) Die Bedeutung der Waldstruktur für die Erhaltung des Haselhuhnes (Tetrastes bonasia L.). Schweiz Z Forstwes 126:876–887Google Scholar
  27. European Environment Agency (ed) (1998) Europe’s environment: the second assessment. Elsevier, OxfordGoogle Scholar
  28. Fielding AH, Bell J (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  29. Fielding AH, Haworth PF (1995) Testing the generality of bird habitat-models. Conserv Biol 9:1466–1481CrossRefGoogle Scholar
  30. Flückiger P, Duelli P (1997) Waldränder—Zentren der Biodiversität. Mitt Dtsch Ges Allg Angew Ent 11:119–123Google Scholar
  31. Friedrich A (2006) Das Auerhuhn in Mittelbünden: Verbreitung und geschlechterspezifische Nutzung des Lebensraums im Sommer (diploma thesis). ETH Zurich/Swiss Federal Research Institute WSL, BirmensdorfGoogle Scholar
  32. Fuller RJ (2000) Influence of treefall gaps on distribution of breeding bird within interior old-growth stands in Bialowieza forest, Poland. Condor 102:267–274CrossRefGoogle Scholar
  33. Glutz von Blotzheim UN (1981) Handbuch der Vögel Mitteleuropas. Band 5: Galliformes und Gruiformes (Nachdruck). Akademische Verlagsgesellschaft, WiesbadenGoogle Scholar
  34. Graf RF, Bollmann K, Bugmann H, Suter W (2007) Forest and landscape structure as predictors of capercaillie occurrence. J Wildl Manage 71:356–365CrossRefGoogle Scholar
  35. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  36. Hagemeijer EJM, Blair MJ (1997) The EBCC atlas of European breeding birds. Poyser, LondonGoogle Scholar
  37. Harrell FE Jr (2001) Regression modeling strategies—with applications to linear models, logistic regression and survival analysis. Springer, New YorkGoogle Scholar
  38. Holloway GJ, Griffiths GH, Richardson P (2003) Conservation strategy maps: a tool to facilitate biodiversity action planning illustrated using the heath fritillary butterfly. J Appl Ecol 40:413–421CrossRefGoogle Scholar
  39. Horch P, Rehsteiner U, Berger-Flückiger A, Müller M, Schuler H, Spaar R (2008) Bestandsrückgang des Braunkehlchens Saxicola rubetra in der Schweiz, mögliche Ursachen und Evaluation von Fördermassnahmen. Ornithol Beob 105:267–298Google Scholar
  40. Hosmer DW Jr, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  41. Hutto RL (1985) Habitat selection by nonbreeding, migratory land birds. In: Cody ML (ed) Habitat selection in birds. Academic, New York, pp 455–476Google Scholar
  42. Imhof S (2007) Saisonale Habitatpräferenzen des Auerhuhns im Waldreservat Amden (diploma thesis). University Zurich/Swiss Federal Research Institute WSL, BirmensdorfGoogle Scholar
  43. IUCN (2008) The IUCN Red List of threatened species. http://www.iucnredlist.org/ Accessed 22 Dez 2008
  44. Jacob L (1988) Régime alimentaire du Grand Tétras (Tetrao urogallus L.) et de la Gélinotte des bois (Bonasa bonasia L.) dans le Jura. Acta Oecol 9:347–370Google Scholar
  45. Jansson G, Angelstam P, Åberg J, Swenson JE (2004) Management targets for the conservation of hazel grouse in boreal landscapes. Ecol Bull 51:259–264Google Scholar
  46. Jones J (2001) Habitat selection studies in avian ecology: a critical review. Auk 118:557–562CrossRefGoogle Scholar
  47. Kaiser N, Mulhauser B, Santiago S (2003) Description des indices permettant de déceler la présence de la gélinotte des bois Bonasa bonasia. In: Mulhauser B (ed) Gélinotte des Bois—Hazel grouse—Bonasa bonasia. Bull Soc Neuchâtel Sci Nat 126:83–106Google Scholar
  48. Kämpfer-Lauenstein A (1997) Habitat selection of hazel grouse Bonasa bonasia and natural dynamics in different central European woodland associations. Wildl Biol 3:289Google Scholar
  49. Keller M (ed) (2005) Schweizerisches Landesforstinventar. Anleitung für die Feldaufnahmen der Erhebung 2004–2007. Eidgenössische Forschungsanstalt WSL, BirmensdorfGoogle Scholar
  50. Keller V, Bollmann K (2001) Für welche Vogelarten trägt die Schweiz eine besondere Verantwortung? Ornithol Beob 98:323–340Google Scholar
  51. Keller V, Zbinden N (2001) Die Schweizer Vogelwelt an der Jahrhundertwende. Avifauna Report Sempach 1. Schweizerische Vogelwarte, SempachGoogle Scholar
  52. Keller V, Zbinden N, Schmid H, Volet B (2001) Rote Liste der gefährdeten Brutvogelarten der Schweiz. BUWAL-Reihe Vollzug Umwelt. Bundesamt für Umwelt, Wald und Landschaft, Bern, und Schweizerische Vogelwarte, SempachGoogle Scholar
  53. Klaus S (1991) Effects of forestry on grouse populations: case studies from Thuringian and Bohemian forests, Central Europe. Ornis Scand 22:218–223CrossRefGoogle Scholar
  54. Klaus S (1995) Hazel grouse in the Bohemian forest—results of a 20-year study. In: Jenkins D (ed) Proc 6th Int Grouse Symp, Udine, Italy, 20–24 Sept 1993, pp 27–33Google Scholar
  55. Klaus S, Bergmann H-H (2004) Situation der waldbewohnenden Raufusshuhnarten Haselhuhn Bonasa bonasia und Auerhuhn Tetrao urogallus in Deutschland—Ökologie, Verbreitung, Gefährdung und Schutz. Vogelwelt 125:283–295Google Scholar
  56. Klaus S, Andreev AV, Bergmann H-H, Müller F, Porkert J, Wiesner J (1986) Die Auerhühner. A. Ziemsen Verlag, Wittenberg LutherstadtGoogle Scholar
  57. Klaus S, Martens J, Andreev AV, Sun Y-H (2003) Bonasa bonasia (Linnaeus, 1758). Atlas Verbr Palaearkt Vögel 20:1–15Google Scholar
  58. Koch N (1978) Hasel- und Auerhuhn an der Hohen Rone (Kanton Zug, Schweiz). Schweiz Z Forstwes 129:897–933Google Scholar
  59. Körner C (2004) Mountain biodiversity, its causes and function. Ambio Spec Rep 13:11–17Google Scholar
  60. Körner C, Spehn E (eds) (2002) Mountain biodiversity: a global assessment. Parthenon, LondonGoogle Scholar
  61. Kumar L, Skidmore AK, Knowles E (1997) Modelling topographic variation in solar radiation in a GIS environment. Int J Geogr Inf Sci 11:475–497CrossRefGoogle Scholar
  62. Lanz M, Bollmann K (2008) Eigenschaften der Schlaf-, Ruhe- und Äsungsbäume des Auerhuhns Tetrao urogallus im Waldreservat Amden. Ornithol Beob 105:63–75Google Scholar
  63. Lieser M (2003) Probleme des Artenschutzes im Wirtschaftswald am Beispiel der Rauhfusshühner im Schwarzwald. Nat Landsch 78:10–17Google Scholar
  64. Ludwig T, Storch I, Wuebbenhorst J (2008) How the Black Grouse was lost: historic reconstruction of its status and distribution in Lower Saxony (Germany). J Ornithol 149:587–596CrossRefGoogle Scholar
  65. Marti J (2004) Vorkommen des Baumpiepers Anthus trivialis auf unterschiedlich genutzten Standorten in den letzten 40 Jahren im Kanton Glarus. Ornithol Beob 101:201–208Google Scholar
  66. Mathys L, Zimmermann NE, Zbinden N, Suter W (2006) Identifying habitat suitability for hazel grouse Bonasa bonasia at the landscape scale. Wildl Biol 12:357–366CrossRefGoogle Scholar
  67. Mazerolle MJ, Villard M-A (1999) Patch characteristics and landscape context as predictors of species presence and abundance: a review. Ecoscience 6:117–124Google Scholar
  68. Meyer D, Debrot S (1989) Insel-Biogeographie und Artenschutz in Wäldern. Schweiz Z Forstwes 140:977–985Google Scholar
  69. Montadert M, Léonard P (2006) Post-juvenile dispersal of Hazel grouse Bonasa bonasia in an expanding population of the southeastern French Alps. Ibis 148:1–13CrossRefGoogle Scholar
  70. Morrison ML, Marcot BG, Mannan RW (1998) Wildlife–habitat relationships. Concepts and applications. The University of Wisconsin Press, MadisonGoogle Scholar
  71. Mulhauser B (2003) Description des structures végétales essentielles de l’habitat de la gélinotte des bois Bonasa bonasia. L’effet patchwork. In: Mulhauser B (ed) Gélinotte des Bois—Hazel grouse—Bonasa bonasia. Bull Soc Neuchâtel Sci Nat 126:151–167Google Scholar
  72. Müller M, Spaar R, Schifferli L, Jenni L (2005) Effects of changes in farming of subalpine meadows on a grassland bird, the whinchat (Saxicola rubetra). J Ornithol 146:14–23CrossRefGoogle Scholar
  73. Müller D, Schröder B, Müller J (2009) Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. J Ornithol 150:717–732CrossRefGoogle Scholar
  74. Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361CrossRefGoogle Scholar
  75. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  76. Reineking B, Schröder B (2004) Gütemasse für Habitatmodelle. UFZ-Bericht 9(2004):27–37Google Scholar
  77. Rhim S-J (2006) Home range and habitat selection of hazel grouse Bonasa bonasia in a temperate forest of South Korea. Forest Ecol Manag 226:22–25CrossRefGoogle Scholar
  78. Rolstad J, Wegge P (1987) Distribution and size of capercaillie leks in relation to old forest fragmentation. Oecologia 72:389–394CrossRefGoogle Scholar
  79. Sachot S, Perrin N, Neet C (2003) Winter habitat selection by two sympatric forest grouse in western Switzerland: implications for conservation. Biol Conserv 112:373–382CrossRefGoogle Scholar
  80. Schäublin S (2007) Distribution and habitat selection of hazel grouse Bonasa bonasia in a subalpine forest (diploma thesis). University Zurich/Swiss Federal Research Institute WSL, BirmensdorfGoogle Scholar
  81. Scheidegger C, Bergamini A, Bürgi M, Holderegger R, Lachat T, Schnyder N, Senn-Irlet B, Wermelinger B, Bollmann K (2010) Waldwirtschaft. In: Lachat T, Pauli D, Gonseth Y, Klaus G, Scheidegger C, Vittoz P, Walter T (eds) Wandel der Biodiversität in der Schweiz seit 1900. Ist die Talsohle erreicht? Bristol-Stiftung. Zürich und Haupt, Bern, pp 124–160Google Scholar
  82. Scherzinger W (1976) Raufuss-Hühner, H 2. Schr Nationalpark Bayer Wald, GrafenauGoogle Scholar
  83. Scherzinger W (1996) Naturschutz im Wald: Qualitätsziele einer dynamischen Waldentwicklung. Ulmer, StuttgartGoogle Scholar
  84. Schönenberger W (2001) Trends in mountain forest management in Switzerland. Schweiz Z Forstw 152:152–156CrossRefGoogle Scholar
  85. Schröder B, Reineking B (2004a) Variablenselektion. UFZ-Bericht 9:39–45Google Scholar
  86. Schröder B, Reineking B (2004b) Validierung von Habitatmodellen. UFZ-Bericht 9:47–56Google Scholar
  87. Scott JM, Heglund PJ, Morrison M, Haufler JB, Wall WA (eds) (2002) Predicting species occurrences: issues of accuracy and scale. Island, Washington, DCGoogle Scholar
  88. Storch I (1995) Annual home range size and spacing patterns of capercaillie in Central Europe. J Wildl Manage 59:392–400CrossRefGoogle Scholar
  89. Storch I (2001) Capercaillie. BWP update. J Birds Western Palearctic 3:1–24Google Scholar
  90. Storch I (2002) On spatial resolution in habitat models: can small scale forest structure explain capercaillie numbers? Conserv Ecol 6:6 (see http://www.consecol.org/vol6/iss1/art6/)
  91. Suter W, Graf RF, Hess R (2002) Capercaillie (Tetrao urogallus) and avian biodiversity: testing the umbrella species concept. Conserv Biol 16:778–788CrossRefGoogle Scholar
  92. Swenson JE (1991) Is the hazel grouse a poor disperser? Trans XXth Congr Int Union Game Biol, Gödöllö, 21–26 Aug 1991, pp 347–352Google Scholar
  93. Swenson JE (1993) The importance of alder to hazel grouse in Fennoscandian boreal forest: evidence from four levels of scale. Ecography 16:37–46CrossRefGoogle Scholar
  94. Swenson JE (1995) The ecology of Hazel Grouse and management of its habitat. Naturschutzreport 10:57–61Google Scholar
  95. Swenson JE, Danielsen J (1991) Status and conservation of the Hazel Grouse in Europe. Ornis Scand 22:297–298CrossRefGoogle Scholar
  96. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0 (see http://www.R-project.org)
  97. Thiollay JM (1990) Comparative diversity of temperate and tropical forest bird communities—the influence of habitat heterogeneity. Acta Oecol 11:887–911Google Scholar
  98. Wiesner J, Bergmann H-H, Klaus S (1977) Siedlungsdichte und Habitatstruktur des Haselhuhns (Bonasa bonasia) im Waldgebiet von Bialowieza (Polen). J Ornithol 118:1–20CrossRefGoogle Scholar
  99. Wildi O, Wohlgemuth T (2007) Waldstatik—Walddynamik. Inf bl Forsch Bereiches Landsch 69:1–4Google Scholar
  100. Zbinden N (1979) Zur Ökologie des Haselhuhns Bonasa bonasia in den Buchenwäldern des Chasseral, Faltenjura. Ornithol Beob 76:169–214Google Scholar
  101. Zbinden N, Blattner M (1998) Haselhuhn. In: Schmid H, Luder R, Naef-Daenzer B, Graf R, Zbinden N (eds) Schweizer Brutvogelatlas—Verbreitung der Brutvögel in der Schweiz und im Fürstentum Liechtenstein 1993–1996. Schweizerische Vogelwarte, Sempach, pp 210–211Google Scholar
  102. Zeiler H (1998) Die Bedeutung der Habitatstruktur in der Winterökologie des Haselhuhns. Endbericht „Haselhuhnprojekt Dellach/Drau” mit Ableitungen für eine haselhuhnfreundliche forstliche Bewirtschaftung. Institut für Wildbiologie und Jagdwirtschaft, Universität für Bodenkultur, WienGoogle Scholar
  103. Zimmermann NE, Kienast F (1999) Predicitve mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482CrossRefGoogle Scholar
  104. Zimmermann NE, Roberts DW (2001) Final report of the MLP Climate and Biophysical Mapping Project (scientific project report). WSL, Birmensdorf, p 18Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Zoological InstituteUniversity of ZurichZurichSwitzerland

Personalised recommendations