Journal of Ornithology

, Volume 151, Issue 4, pp 889–899 | Cite as

Impact of weather and climate variation on Hoopoe reproductive ecology and population growth

  • Raphaël Arlettaz
  • Michael Schaad
  • Thomas S. Reichlin
  • Michael Schaub
Original article


Preserving peripheral populations is a key conservation issue because of the adaptive potential to environmental change they provide for the species as a whole. Yet, peripheral populations are often small and isolated, i.e. more vulnerable to stochastic events and prone to extinction. We studied a peripheral population of Hoopoe (Upupa epops), a rare insectivorous farmland bird, in the Swiss Alps. We first investigated the effect of weather variation on food provisioning to chicks by Hoopoe parents. Second, while accounting for density-dependence, we tested the extent to which breeding success is governed by weather circumstances and assessed the possible consequences of climate variation on population growth. Provisioning rate and provisioned prey biomass were negatively affected by adverse weather (cool, rainy days), were higher in males and also increased with brood size. Much smaller proportions of molecrickets (Gryllotalpa gryllotalpa; the most profitable prey locally, constituting 93% of chicks’ food biomass) were provisioned on days with adverse weather, irrespective of brood size. Rainfall prior to hatching and during the first days of chick life had a negative impact on their survival, and there was a positive effect of temperature on chick survival just before fledging. Reproductive output was negatively affected by precipitation during the hatching period, but was enhanced by warm temperature just before hatching and in the last days before fledging. Our model showed that the variable reproductive output has a strong impact on the population growth: a succession of adverse, rainy springs would cause a rapid decline of the population. This case study confirms that conservation efforts may be obliterated if risks linked to increasing climate variability are not properly accounted for in the management of small peripheral populations.


Bird conservation Food provisioning Insectivorous birds Reproduction versus climate variation Trophic ecology 



We thank A. Sierro, P. Mosimann-Kampe, F. Leippert, H. Alber, M. Bendel, J. Fournier, A. Tagmann-Ioset, S. Mettaz, B. Posse, H. Routti, B. Tschirren, A. Valsangiacomo and N. Weisshaupt for their assistance. O. Roth and M. Whyte assisted with editing.


  1. Antonovics J, McKane AJ, Newman TJ (2006) Spatiotemporal dynamics in marginal populations. Am Nat 167:16–27CrossRefPubMedGoogle Scholar
  2. Arlettaz R (1984) Ecologie d’une population de huppes, Upupa e. epops, en Valais: répartition spatiale, biotopes et sites de nidification. Nos Oiseaux 37:197–222Google Scholar
  3. Arlettaz R, Perrin N (1995) The trophic niches of sympatric sibling Myotis myotis and Myotis blythii: do mouse-eared bats select prey? Symp Zool Soc Lond 67:361–376Google Scholar
  4. Arlettaz R, Fournier J, Zbinden N (2000) Evolution démographique (1979–1998) d’une population témoin de huppe fasciée Upupa epops en Valais et stratégie de conservation ciblée. Nos Oiseaux 47:19–27Google Scholar
  5. Arlettaz R, Christe P, Lugon A, Perrin N, Vogel P (2001) Food availability dictates the timing of parturition in insectivorous mouse-eared bats. Oikos 95:105–111CrossRefGoogle Scholar
  6. Avery MI, Krebs JR (1984) Temperature and foraging success of great tits Parus major hunting for spiders. Ibis 126:33–38CrossRefGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  8. Bussmann J (1950) Zur Brutbiologie des Wiedehopfes (Upupa epops). Ornithol Beob 47:141–151Google Scholar
  9. Cassel-Lundhagen A, Tammaru T, Winding JJ, Ryrholm N, Nylin S (2009) Are peripheral populations special? Congruent patterns in two butterfly species. Ecography 32:591–600CrossRefGoogle Scholar
  10. Channell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered species. Nature 403:84–86CrossRefPubMedGoogle Scholar
  11. Cramp S (1985) Birds of the western Palearctic, vol IV. Oxford University Press, OxfordGoogle Scholar
  12. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295CrossRefPubMedGoogle Scholar
  13. Crick HQP, Gibbons DW, Magrath RD (1993) Seasonal changes in clutch size in British birds. J Anim Ecol 62:263–273CrossRefGoogle Scholar
  14. Cucco M, Malacarne G (1996a) Reproduction of the pallid swift (Apus pallidus) in relation to weather and aerial insect abundance. Ital J Zool 63:247–253CrossRefGoogle Scholar
  15. Cucco M, Malacarne G (1996b) Effect of food availability on nestling growth and fledging success in manipulated pallid swift broods. J Zool 240:141–151CrossRefGoogle Scholar
  16. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling and impacts. Science 289:2068–2074CrossRefPubMedGoogle Scholar
  17. Fournier J, Arlettaz R (2001) Food provision to nestlings in the hoopoe Upupa epops: implications for the conservation of a small endangered population in the Swiss Alps. Ibis 143:2–10CrossRefGoogle Scholar
  18. Geiser S, Arlettaz R, Schaub M (2008) Impact of weather variation on feeding behaviour, nestling growth and brood survival in wrynecks Jynx torquilla. J Ornithol 149:597–606CrossRefGoogle Scholar
  19. Gibson SY, Van der Marel RC, Starzomsi BM (2009) Climate change and conservation of leading-edge peripheral populations. Cons Biol 23:1369–1373CrossRefGoogle Scholar
  20. Glutz von Blotzheim UN, Bauer KM (1980) Upupa epops Linnaeus 1758–Wiedehopf. In: Glutz von Blotzheim UN (ed) Handbuch der Vögel Mitteleuropas, Band 9: Columbiformes-Piciformes. Akademische Verlagsgesellschaft, Wiesbaden, pp 852–876Google Scholar
  21. Hendry AP, Kinnison MT (1999) Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637–1653CrossRefGoogle Scholar
  22. Hoffmann AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227CrossRefGoogle Scholar
  23. Horton P, Schaefli B, Mezghani A, Hingray B, Musy A (2006) Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrol Process 20:2091–2109CrossRefGoogle Scholar
  24. Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential impacts of climatic change on European breeding birds. PLoS ONE 3:e1439. doi: 10.1371/journal.pone.0001439 CrossRefPubMedGoogle Scholar
  25. Hustings F (1997) Upupa epops, Hoopoe. In: Hagemeijer WJM, Blair MJ (eds) The EBCC Atlas of European breeding birds: their distribution and abundance. Poyser, London, pp 438–439Google Scholar
  26. Keller V, Zbinden N, Schmid H, Volet B (2001) Rote Liste der gefährdeten Brutvogelarten der Schweiz, BUWAL-Reihe Vollzug Umwelt. Bundesamt für Umwelt, Wald und Landschaft and Schweizerische Vogelwarte Sempach, BernGoogle Scholar
  27. Laiolo P, Bignal EM, Patterson IJ (1998) The dynamics of parental care in choughs (Pyrrhocorax pyrrhocorax). J Ornithol 139:297–305CrossRefGoogle Scholar
  28. Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413CrossRefGoogle Scholar
  29. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760CrossRefGoogle Scholar
  30. Lomolino MV, Channell R (1995) Splendid isolation: patterns of geographic range collapse in endangered mammals. J Mammal 76:335–347CrossRefGoogle Scholar
  31. Martín-Vivaldi M, Palomino JJ, Soler M, Soler JJ (1999) Determinants of reproductive success in the hoopoe Upupa epops, a hole-nesting non-passerine bird with asynchronous hatching. Bird Study 46:205–216CrossRefGoogle Scholar
  32. Mills JA, Yarrall JW, Bradford-Grieve JM, Uddstrom MJ, Renwick JA, Merilä J (2008) The impact of climate fluctuation on food availability and reproductive performance of the planktivorous red-billed gull Larus novaehollandiae scopulinus. J Anim Ecol 77:1129–1142CrossRefPubMedGoogle Scholar
  33. Nantel P, Gagnon D (1999) Variability in the dynamics of northern peripheral versus southern populations of two clonal plant species, Helianthus divaricatus and Rhus aromatica. J Ecol 87:748–760CrossRefGoogle Scholar
  34. Nathan R, Safriel UN, Shirihai H (1996) Extinction and vulnerability to extinction at distribution peripheries: an analysis of the Israeli breeding avifauna. Isr J Zool 42:361–383Google Scholar
  35. Newton I (1998) Population limitation in birds. Academic, San DiegoGoogle Scholar
  36. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefPubMedGoogle Scholar
  37. Pellantova J (1981) The growth of young of the swift, Apus apus, in relation to the number of nestlings, temperature, feeding frequency and quantity of food. Folia Zool 30:59–73Google Scholar
  38. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  39. Radford AN, Du Plessis MA (2003) The importance of rainfall to a cavity-nesting species. Ibis 145:692–694CrossRefGoogle Scholar
  40. Radford AN, McCleery RH, Woodburn RJW, Morecroft MD (2001) Activity patterns of parent great tits Parus major feeding their young during rainfall. Bird Study 48:214–220CrossRefGoogle Scholar
  41. Rehsteiner U (1996) Siedlungsdichte und Habitatansprüche des Wiedehopfs Upupa epops in Extremadura (Spanien). Ornithol Beob 93:277–287Google Scholar
  42. Reznick DN, Shaw FH, Rodd FH, Shaw RG (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275:1934–1937CrossRefPubMedGoogle Scholar
  43. Rodríguez C, Bustamante J (2003) The effect of weather on lesser kestrel breeding success: can climate change explain historical population declines? J Anim Ecol 72:793–810CrossRefGoogle Scholar
  44. Sæther BE, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653Google Scholar
  45. Sagarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147CrossRefGoogle Scholar
  46. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  47. Schaub M (1996) Jagdverhalten und Zeitbudget von Rotkopfwürgern Lanius senator in der Nordwestschweiz. J Ornithol 137:213–227CrossRefGoogle Scholar
  48. Siikamäki P (1996) Nestling growth and mortality of pied flycatchers Ficedula hypoleuca in relation to weather and breeding effort. Ibis 138:471–478CrossRefGoogle Scholar
  49. Taylor LR (1963) Analysis of the effect of temperature on insects in flight. J Anim Ecol 32:99–117CrossRefGoogle Scholar
  50. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  51. Turner AK (1983) Time and energy constraints on the brood size of swallows, Hirundo rustica, and sand martins, Riparia riparia. Oecologia 59:331–338CrossRefGoogle Scholar
  52. Veistola S, Lehikoinen E, Eeva T (1997) Weather and breeding success at high latitudes—the pied flycatcher Ficedula hypoleuca and the Siberian tit Parus cinctus. Ornis Fenn 74:89–98Google Scholar
  53. Wanner J, Rickli R, Salvisberg E, Schmutz C, Schüepp M (1997) Global climate change and variability and its influence on Alpine climate—concepts and observations. Theor Appl Climatol 58:221–243CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  • Raphaël Arlettaz
    • 1
    • 2
    • 3
  • Michael Schaad
    • 1
  • Thomas S. Reichlin
    • 1
    • 4
  • Michael Schaub
    • 1
    • 4
  1. 1.Division of Conservation Biology, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  2. 2.Valais Field StationSwiss Ornithological Institute, Nature CentreSalgeschSwitzerland
  3. 3.The Ecology CentreUniversity of QueenslandSt LuciaAustralia
  4. 4.Swiss Ornithological InstituteSempachSwitzerland

Personalised recommendations