Journal of Ornithology

, Volume 151, Issue 4, pp 867–880 | Cite as

Food or nesting place? Identifying factors limiting Wryneck populations

  • Valérie Coudrain
  • Raphaël Arlettaz
  • Michael Schaub
Original article


In recent decades, farmland bird populations have declined strongly as a consequence of agriculture intensification. Birds may have lost breeding sites, food supply or other crucial resources, with the role of multiple factors often remaining unclear. The ant-eating and cavity-breeding Wryneck (Jynx torquilla) may be limited by the availability of cavities, the number of ants or their accessibility. By comparing occupied and unoccupied breeding territories, we investigated the relative role of these factors in the decline of Wrynecks. We compared the characteristics of known Wryneck breeding territories (availability of breeding cavities, food abundance and ground vegetation structure) with randomly selected, fictitious territories (n = 154) in Western Switzerland. We also studied environmental factors that may affect ant nest density. The probability of territory occupancy strongly increased with both nestbox availability and ant abundance. In addition, this probability peaked around 50% of bare ground cover. Habitat types that harbour low ant abundance such as cropland and grassland were avoided. Ant nest density decreased with increasing amounts of bare ground, and it was particularly high in vineyards. Our results showed that breeding cavities, food availability and its accessibility all limit Wryneck distribution. The maintenance and restoration of ant rich grassland, interspersed with patches of bare ground and with hollow trees or dedicated nestboxes in the surroundings, are essential to preserve Wryneck populations. Such a habitat structure could be achieved even in intensively farmed habitats, such as in vineyards or fruit tree plantations.


Ant nest abundance Nest box Vegetation structure Bare ground Jynx torquilla 



Data on Wryneck breeding sites were kindly provided by Hans Schmid, Niklaus Zbinden, Blaise Mulhauser, Sébastien Chabot, Bernard Genton, Bernard Lugrin and Michel Rogg. We thank Fitsum Abadi Gebreselassie for statistical advise, Jerôme Guelat for his help with GIS, and Niklaus Zbinden for valuable comments. Diane Patry offered accommodation during the field work.


  1. Atkinson PW, Buckingham DL, Morris AJ (2004) What factors determine where invertebrate-feeding birds forage in dry agricultural grasslands? Ibis 146(Suppl 2):99–107CrossRefGoogle Scholar
  2. Benton TG, Bryant DM, Cole L, Crick HQP (2002) Linking agricultural practice to insect and bird populations: a historical study over three decades. J Appl Ecol 39:673–687CrossRefGoogle Scholar
  3. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  4. Bestelmeyer BT, Wiens JA (2001) Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecol Appl 11:1123–1140CrossRefGoogle Scholar
  5. Bitz A, Rohe W (1993) Nahrungsökologische Untersuchungen am Wendehals (Jynx torquilla) in Rheinland-Pfalz. Beih Veröff Naturschutz Landschaftspflege Bad-Württ 67:83–100Google Scholar
  6. Blanco G, Tella JL, Torre I (1998) Traditional farming and key foraging habitats for chough Pyrrhocorax pyrrhocorax conservation in a Spanish pseudosteppe landscape. J Appl Ecol 35:232–239CrossRefGoogle Scholar
  7. Bromham L, Cardillo M, Bennett AF, Elgar MA (1999) Effects of stock grazing on the ground invertebrate fauna of woodland remnants. Aust J Ecol 24:199–207CrossRefGoogle Scholar
  8. Bull EL, Holthausen RS, Henjum MG (1992) Roost trees used by pileated woodpeckers in northeastern Oregon. J Wildl Manag 56:786–793CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and inference. Springer, New YorkGoogle Scholar
  10. Butler SJ, Gillings S (2004) Quantifying the effects of habitat structure on prey detectability and accessibility to farmland birds. Ibis 146(Suppl 2):123–130CrossRefGoogle Scholar
  11. Cornelius C, Cockle K, Politi N, Berkunsky I, Sandoval L, Ojeda V, Rivera L, Hunter M Jr, Martin K (2008) Cavity-nesting birds in neotropical forests: cavities as a potentially limiting resource. Ornithol Neotrop 19:253–268Google Scholar
  12. Cramp S (1985) The birds of the Western Palearctic, vol 4. Oxford University Press, OxfordGoogle Scholar
  13. Della Santa E (1994) Guide pour l’identification des principales espèces de fourmis de Suisse. Centre suisse de cartographie de la faune, NeuchâtelGoogle Scholar
  14. Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc Lond B 268:25–29CrossRefGoogle Scholar
  15. Ehrenbold S (2004) Habitat suitability modelling and components of reproductive success in the Wryneck Jynx torquilla. Diplomarbeit. Philosophisch-naturwissenschaftliche Fakultät der Universität BernGoogle Scholar
  16. Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244CrossRefGoogle Scholar
  17. Freeman KE, Kirk DA (2001) Birds on organic and conventional farms in Ontario: partitioning effects of habitat and practices on species composition and abundance. Biol Conserv 101:337–350CrossRefGoogle Scholar
  18. Freitag A (1996) Le régime alimentaire du Torcol fourmilier (Jynx torquilla) en Valais (Suisse). Nos Oiseaux 43:497–512Google Scholar
  19. Freitag A (1998) Analyse de la disponibilité spatio-temporelle des fourmis et des strategies de fourragement du torcol fourmilier (Jynx torquilla L.). Thèse de Doctorat. Université de LausanneGoogle Scholar
  20. Freitag A, Martinoli A, Urzelai J (2001) Monitoring the feeding activity of nesting birds with an autonomous system: case study of the endangered Wryneck Jynx torquilla. Bird Study 48:102–109CrossRefGoogle Scholar
  21. Hines JE (2006) PRESENCE software to estimates patch occupancy rates and related parameters. Patuxent Wildlife Research Center, LaurelGoogle Scholar
  22. Hölzinger J (1987) Wendehals—Jynx torquilla. Die Vögel Baden-Württembergs. Gefährdung und Schutz. Ulmer, Stuttgart, pp 1152–1156Google Scholar
  23. Hutto RL (1990) Measuring the availability of food resources. Stud Avian Biol 13:20–28Google Scholar
  24. Kaspari M (2000) A primer on ant ecology. In: Agosti D, Majer J, Alonso L, Schultz TR (eds) Ants: Standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, DCGoogle Scholar
  25. Kervyn T, Xhardez C (2006) Utilisation de l’espace par le Torcol fourmilier (Jynx torquilla) lors d’une nidification uniparentale en Ardenne. Aves 43:65–72Google Scholar
  26. Lessard J-P, Buddle CM (2005) The effects of urbanization on ant assemblage (Hymenoptera: Formicidae) associated with the Molson Nature Reserve, Quebec. Can Entomol 137:215–225CrossRefGoogle Scholar
  27. Martinez N, Jenni L, Wyss E, Zbinden N (2010) Habitat structure versus food abundance: the importance of sparse vegetation for the common redstart Phoenicurus phoenicurus. J Ornithol 151:297–307CrossRefGoogle Scholar
  28. McCracken DI, Tallowin JR (2004) Swards and structure: the interactions between farming practices and bird food resources in lowland grasslands. Ibis 146(Suppl 2):108–114CrossRefGoogle Scholar
  29. Mermod M, Arlettaz R, Reichlin TS, Schaub M (2009) The importance of ant-rich habitats for the persistence of the Wryneck Jynx torquilla on farmland. Ibis 151:731–742CrossRefGoogle Scholar
  30. Morris MG (2000) The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol Conserv 95:129–142CrossRefGoogle Scholar
  31. Newton I (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579–600CrossRefGoogle Scholar
  32. Peck SL, McQuaid K, Campbell CL (1998) Using ant species (Hymenoptera: Formicidae) as a biological indicator of agroecosystem condition. Environ Entomol 27:1102–1110Google Scholar
  33. Platner C (2006) Ameisen als Schlüsseltiere in einem Grasland. Studien zu ihrer Bedeutung für die Tiergemeinschaft, das Nahrungsnetz und das Ökosystem. Universitätsverlag GöttingenGoogle Scholar
  34. Poeplau N (2005) Untersuchungen zur Siedlungsdichte und Habitatqualität des Wendehalses (Jynx torquilla) in Südhessen. Zeitschrift für Vogelkunde und Naturschutz in Hessen. Vogel Umwelt 16:115–127Google Scholar
  35. Royle JA, Nichols JD (2003) Estimating abundance from repeated presence–absence data or point counts. Ecology 84:777–790CrossRefGoogle Scholar
  36. Seifert B (1996) Ameisen. Naturbuch, AugsburgGoogle Scholar
  37. Talbot M (1946) Daily fluctuations in aboveground activity of three species of ants. Ecology 27:65–70CrossRefGoogle Scholar
  38. Tomialojc L (1994) Wryneck. In: Tucker GM, Heath MF (eds) Birds in Europe: their conservation status. BirdLife International, Cambridge, pp 342–343Google Scholar
  39. Underwood E, Fischer B (2006) The role of ants in conservation monitoring: if, when, and how. Biol Conserv 132:166–182CrossRefGoogle Scholar
  40. Weisshaupt N (2007) Habitat selection by foraging wrynecks Jynx torquilla during the breeding season: identifying optimal species habitat. Masterarbeit. Philosophisch-naturwissenschaftliche Fakultät der Universität BernGoogle Scholar
  41. Wilson JD, Whittingham MJ, Bradbury RB (2005) The management of crop structure: a general approach to reversing the impacts of agricultural intensification on birds? Ibis 147:453–463CrossRefGoogle Scholar
  42. Wretenberg J, Lindström A, Svensson S, Thierfelder T, Pärt T (2006) Population trends of farmland birds in Sweden and England: similar trends but different patterns of agricultural intensification. J Appl Ecol 43:1110–1120CrossRefGoogle Scholar
  43. Zingg S, Arlettaz R, Schaub M (2010) Nestbox design influences territory occupancy and reproduction in a declining, secondary cavity-breeding bird. Ardea 98:67–75Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  • Valérie Coudrain
    • 1
  • Raphaël Arlettaz
    • 1
    • 2
  • Michael Schaub
    • 1
    • 2
  1. 1.Division of Conservation Biology, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  2. 2.Swiss Ornithological InstituteSempachSwitzerland

Personalised recommendations