Journal of Ornithology

, Volume 151, Issue 4, pp 841–849 | Cite as

Haematological health assessment in a passerine with extremely high proportion of basophils in peripheral blood

  • Michal Vinkler
  • Jan Schnitzer
  • Pavel Munclinger
  • Jan Votýpka
  • Tomáš Albrecht
Original article


Haematological methods are widely utilised among avian ecologists as a means for individual health assessment. However, the technical simplicity of some of the tests may easily lead to oversimplification of the evaluation. Here, we show in the Scarlet Rosefinch (Carpodacus erythrinus) that haematological parameters other than the widely used heterophil/lymphocyte (H/L) ratio may be important to investigate. We give the full description of seven basic haematological traits (leukocyte differential count, immature erythrocyte count, haematocrit, mean cell volume, total red and white blood cell count and blood parasite occurrence). Most remarkably, the examination of 178 adults and 155 nestlings has revealed that this species has an extraordinarily high proportion of basophils among the peripheral blood leukocytes (on average about 42 and 56%, respectively). Although the high basophil count is a general trait even in healthy individuals of this species, the proportion of these cells is condition-dependent and is further increased by Haemoproteus infection. Our results also suggest that the immature erythrocyte count in the peripheral blood is a good predictor of the nestlings’ growth rate. We conclude that the Rosefinch haematology differs strikingly from other avian species with known values of basic haematological parameters. We therefore emphasise the importance of a general haematological examination, based on material obtained by an appropriate method (e.g. for smear preparation, we recommend using differential staining and avoiding prior methanol fixation).


Basophilic granulocyte Hematology Hematocrit Leucocyte differential count Polychromatic erythrocyte 


  1. Albrecht T (2004) Edge effect in wetland-arable land boundary determines nesting success of scarlet rosefinches (Carpodacus erythrinus) in the Czech Republic. Auk 121:361–371CrossRefGoogle Scholar
  2. Albrecht T, Schnitzer J, Kreisinger J, Exnerova A, Bryja J et al (2007) Extra pair paternity and the opportunity for sexual selection in long-distant migratory passerines. Behav Ecol 18:477–486CrossRefGoogle Scholar
  3. Altan O, Pabuccuoglu A, Altan A, Konyalioglu S, Bayraktar H (2003) Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br Poult Sci 44:545–550CrossRefPubMedGoogle Scholar
  4. Ardia DR, Schat KA (2008) Ecoimmunology. In: Davison F, Kaspers B, Schat KA (eds) Avian immunology. Academic/Elsevier, London, pp 421–441CrossRefGoogle Scholar
  5. Bedáňová I, Voslářová E, Večerek V, Pištěková V, Chloupek P (2007) Haematological profile of broiler chickens under acute stress due to shackling. Acta Vet BRNO 76:129–135CrossRefGoogle Scholar
  6. Belskii EA, Lugas’kova NV, Karfidova AA (2005) Reproductive parameters of adult birds and morphophysiological characteristics of chicks in the pied flycatcher (Ficedula hypoleuca Pall.) in technogenically polluted habitats. Russ J Ecol 36:329–335CrossRefGoogle Scholar
  7. Campbell TW, Ellis CK (2007) Avian and exotic animal hematology and cytology, 3rd edn. Blackwell, AmesGoogle Scholar
  8. Carleton RE (2008) Ectoparasites affect haemoglobin and percentages of immature erythrocytes but not hematocrit in nestling eastern bluebirds. Wilson J Ornithol 120:565–568CrossRefGoogle Scholar
  9. Chakarov N, Boerner M, Krüger O (2008) Fitness in common buzzards at the cross-point of opposite melanin-parasite interactions. Funct Ecol 22:1062–1069CrossRefGoogle Scholar
  10. Coke RL, West GD, Hoover JP (2004) Hematology and plasma biochemistry of captive puna ibis (Plegadis ridgewayi). J Wildl Dis 40:141–144PubMedGoogle Scholar
  11. Constantino BT, Cogionis B (2000) Nucleated RBCs—significance in the peripheral blood film. Laboratory Medicine 31:223–229CrossRefGoogle Scholar
  12. Cramp S, Perrins CM, Brooks DJ (1994) The birds of the western Palearctic. Oxford University Press, OxfordGoogle Scholar
  13. Crawley MJ (2002) Statistical computing: an introduction to data analysis using s-plus. Wiley, ChichesterGoogle Scholar
  14. Daloia MA, Samour JH, Howlett JC, Bailey TA, Naldo J (1994) Haemopathological responses to chronic inflammation in the houbara-bustard (Chlamydotis-Undulata-Macqueenii). Comp Haematol Int 4:203–206CrossRefGoogle Scholar
  15. Davis AK (2005) Effect of handling time and repeated sampling on avian white blood cell counts. J Field Ornithol 76:334–338Google Scholar
  16. Davis AK (2009) The wildlife leukocytes webpage: the ecologist’s source for information about leukocytes of wildlife species.
  17. Davis AK, Cook KC, Altizer S (2004) Leukocyte profiles of house finches with and without mycoplasmal conjunctivitis, a recently emerged bacterial disease. EcoHealth 1:362–373CrossRefGoogle Scholar
  18. Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772CrossRefGoogle Scholar
  19. Dubiec A, Witek M, Cichon M (2005) Seasonal decline in leukocyte concentrations and reproductive output in female great tits (Parus major). Auk 12:27–34Google Scholar
  20. Dufva R, Allander K (1995) Intraspecific variation in plumage coloration reflects immune-response in great tit (Parus major) males. Funct Ecol 9:785–789CrossRefGoogle Scholar
  21. El Lethey H, Huber-Eicher B, Jungi TW (2003) Exploration of stress-induced immunosuppression in chickens reveals both stress-resistant and stress-susceptible antigen responses. Vet Immunol Immunopathol 95:91–101CrossRefPubMedGoogle Scholar
  22. Ewenson EL, Zann RA, Flannery GR (2001) Body condition and immune response in wild zebra finches: effects of capture, confinement and captive-rearing. Naturwissenschaften 88:391–394CrossRefPubMedGoogle Scholar
  23. Falcone FH, Pritchard DI, Gibbs BF (2001) Do basophils play a role in immunity against parasites? Trends Parasitol 17:126–129CrossRefPubMedGoogle Scholar
  24. Fokidis HB, Greiner EC, Deviche P (2008) Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J Avian Biol 39:300–310CrossRefGoogle Scholar
  25. Friedl TP, Edler R (2005) Stress-dependent trade-off between immunological condition and reproductive performance in the polygynous red bishop (Euplectes orix). Evol Ecol 19:221–239CrossRefGoogle Scholar
  26. Fudge AM (1989) Avian hematology: identification and interpretation. Proceedings association of avian veterinarians 284–292Google Scholar
  27. Garvin MC, Homer BL, Greiner EC (2003) Pathogenicity of Haemoproteus danilewskyi, Kruse, 1890, in blue jays (Cyanocitta cristata). J Wildl Dis 39:161–169PubMedGoogle Scholar
  28. Hauptmanová K, Literák I, Bártová E (2002) Haematology and leucocytozoonosis of great tits (Parus major L.) during winter. Acta Vet Brno 71:199–204Google Scholar
  29. Lazarevic M, Zikic D, Uscebrka G (2000) The influence of long term sound stress on the blood leukocyte count, heterophil/lymphocyte ratio and cutaneous basophil hypersensitive reaction to phytohemagglutinin in broiler chickens. Acta Vet Beogr 50:63–75Google Scholar
  30. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities—a common mistake. Auk 104:116–121Google Scholar
  31. Lobato E, Moreno J, Merino S, Sanz JJ, Arriero E (2005) Haematological variables are good predictors of recruitment in nestling pied flycatchers (Ficedula hypoleuca). Ecoscience 12:27–34CrossRefGoogle Scholar
  32. Lucas AM, Jamroz C (1961) Atlas of avian hematology. United States Department of Agriculture, WashingtonGoogle Scholar
  33. Maxwell MH (1981) Leucocyte diurnal rhythms in normal and pinealectomize juvenile female fowls. Res Vet Sci 31:113–115PubMedGoogle Scholar
  34. Maxwell MH (1993) Avian blood leukocyte responses to stress. Worlds Poult Sci J 49:34–43CrossRefGoogle Scholar
  35. Maxwell MH, Robertson GW (1995) The avian basophilic leukocyte: a review. Worlds Poult Sci J 51:307–325CrossRefGoogle Scholar
  36. Mercurio DDG, Marte BRG, Cruzana BC (2008) Hematological values of chestnut mannikin (Lonchura malacca) caught in Laguna. Philipp J Vet Med 45:63–66Google Scholar
  37. Moreno J, de Leon A, Fargallo JA, Moreno E (1998) Breeding time, health and immune response in the chinstrap penguin Pygoscelis antarctica. Oecologia 115:312–319CrossRefGoogle Scholar
  38. Norte AC, Araujo PM, Sampaio HL, Sousa JP, Ramos JA (2009a) Haematozoa infections in a great tit Parus major population in Central Portugal: relationships with breeding effort and health. Ibis 151:677–688CrossRefGoogle Scholar
  39. Norte AC, Ramos JA, Sousa JP, Sheldon BC (2009b) Variation of adult great tit Parus major body condition and blood parameters in relation to sex, age, year and season. J Ornithol 150:651–660CrossRefGoogle Scholar
  40. Ots I, Hõrak P (1998) Health impact of blood parasites in breeding great tits. Oecologia 116:441–448CrossRefGoogle Scholar
  41. Ots I, Murumagi A, Hõrak P (1998) Haematological health state indices of reproducing great tits: methodology and sources of natural variation. Funct Ecol 12:700–707CrossRefGoogle Scholar
  42. Risberg L, Stjernberg T (1997) Scarlet Rosefinch (Carpodacus erythrinus). In: Hagemeijer WJM, Blair MJ (eds) The EBCC atlas of European breeding birds. Poyser, London, pp 732–733Google Scholar
  43. Robertson GW, Maxwell MH (1990) Modified staining techniques for avian blood-cells. Br Poult Sci 31:881–886CrossRefPubMedGoogle Scholar
  44. Ruiz G, Rosenmann M, Novoa FF, Sabat P (2002) Hematological parameters and stress index in rufous-collared sparrows dwelling in urban environments. Condor 104:162–166CrossRefGoogle Scholar
  45. Scope A, Filip T, Gabler C, Resch F (2002) The influence of stress from transport and handling on hematologic and clinical chemistry blood parameters of racing pigeons (Columba livia domestica). Avian Dis 46:224–229CrossRefPubMedGoogle Scholar
  46. Senar JC, Pascual J (1997) Keel and tarsus length may provide a good predictor of avian body size. Ardea 85:269–274Google Scholar
  47. Sergent N, Rogers T, Cunningham M (2004) Influence of biological and ecological factors on haematological values in wild little penguins, Eudyptula minor. Comp Biochem Physiol A-Mol Integr Physiol 138:333–339CrossRefPubMedGoogle Scholar
  48. Šťastný K, Bejček V, Hudec K (2006) Atlas hnízdního rozšíření ptáků v České republice. Aventinum, PrahaGoogle Scholar
  49. Uhart MM, Quintana F, Karesh WB, Braselton WE (2003) Hematology, plasma biochemistry, and serosurvey for selected infectious agents in southern giant petrels from Patagonia, Argentina. J Wildl Dis 39:359–365PubMedGoogle Scholar
  50. Votýpka J, Šimek J, Tryjanowski P (2003) Blood parasites, reproduction and sexual selection in the red-backed shrike (Lanius collurio). Ann Zool Fenn 40:431–439Google Scholar
  51. Yamato O, Goto I, Maeda Y (1996) Hemolytic anemia in wild seaducks caused by marine oil pollution. J Wildl Dis 32:381–384PubMedGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2010

Authors and Affiliations

  • Michal Vinkler
    • 1
    • 3
  • Jan Schnitzer
    • 1
  • Pavel Munclinger
    • 1
  • Jan Votýpka
    • 2
  • Tomáš Albrecht
    • 1
    • 3
  1. 1.Department of Zoology, Faculty of ScienceCharles University in PraguePragueCzech Republic
  2. 2.Department of Parasitology, Faculty of ScienceCharles University in PraguePragueCzech Republic
  3. 3.Institute of Vertebrate BiologyAcademy of Sciences of the Czech Republic, v.v.i.BrnoCzech Republic

Personalised recommendations