Journal of Ornithology

, Volume 151, Issue 2, pp 329–336 | Cite as

Seasonal differences in at-sea activity of seabirds underline high energetic demands during the breeding period

  • Nele MarkonesEmail author
  • Volker Dierschke
  • Stefan Garthe
Original Article


We assessed seasonal differences in at-sea activity of Lesser Black-backed Gulls Larus fuscus, Black-legged Kittiwakes Rissa tridactyla and Common Guillemots Uria aalge in the south-eastern North Sea. The three species correspond to different ecological groups, with Lesser Black-backed Gulls representing omnivorous generalists, Kittiwakes representing surface-feeding pelagic seabirds, and Guillemots representing pursuit-diving pelagic seabirds. Using data from aerial surveys, we differentiated between active (flying or scavenging at fishing vessels) and inactive behaviour (swimming). We estimated the activity budgets of all three species for the different seasons and tested for differences in activity between different seasons. All species exhibited significant seasonal differences in activity, with the highest levels of activity observed during the breeding season. Numbers of flying auks were, however, exceptionally low in autumn due to moult and guarding of not-yet fledged chicks at sea. Our results underline the high energetic demands of the breeding season that lead to increased foraging and travelling activity.


Black-legged Kittiwake Lesser Black-backed Gull Common Guillemot At-sea activity Time–activity budget Seasonality 



Aerial surveys comprise data collected under the financial support of the Federal Environmental Ministry (BMU), the Federal Agency for Nature Conservation (BfN), the Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig–Holstein (LKN, formerly NPA SH) and the Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN, formerly NLOE). Various observers contributed to data collection, which was made comfortable by the staff of Sylt Air (Westerland) and FLM Aviation (Kiel). Sven Adler provided valuable statistical support. John C. Coulson, Bob Furness, Nils Guse and two anonymous reviewers gave valuable comments on earlier drafts. The analysis was partly funded by the project “Zeitlich-räumliche Variabilität der Seevogel-Vorkommen in der deutschen Nord- und Ostsee und ihre Bewertung hinsichtlich der Offshore-Windenergienutzung” (project 5 of MINOS plus, financed by the Federal Environmental Ministry).


  1. Altmann J (1974) Observational study of behaviour: sampling methods. Behaviour 49:227–267CrossRefPubMedGoogle Scholar
  2. Bates D, Sarkar D (2007) Reference manual lme4: linear mixed-effects models using S4 classes.
  3. Benvenuti S, Dall’Antonia L, Lyngs P (2001) Foraging behaviour and time allocation of chick-rearing Razorbills Alca torda at Græsholmen, central Baltic Sea. Ibis 143:402–412CrossRefGoogle Scholar
  4. Cairns DK (1987) Seabirds as indicators of marine food supplies. Biol Oceanogr 5:261–271Google Scholar
  5. Camphuysen CJ (1998) Diurnal activity patterns and nocturnal group formation of wintering Common Murres in the central North Sea. Colon Waterbirds 21:406–413CrossRefGoogle Scholar
  6. Catry P, Phillips RA, Phalan B, Silk JRD, Croxall JP (2004) Foraging strategies of Grey-headed Albatrosses Thalasse chrysostoma: integration of movements, activity and feeding events. Mar Ecol Prog Ser 280:261–273CrossRefGoogle Scholar
  7. Croxall JP, Silk JRD, Phillips RA, Afanasyev V, Briggs DR (2005) Global circumnavigations: tracking year-round ranges of non-breeding albatrosses. Science 307:249–250CrossRefPubMedGoogle Scholar
  8. Daunt F, Benvenuti S, Harris MP, Dall’Antonia L, Elston DA, Wanless S (2002) Foraging strategies of the Black-legged Kittiwake Rissa tridactyla at a North Sea colony: evidence for a maximum foraging range. Mar Ecol Prog Ser 245:239–247CrossRefGoogle Scholar
  9. Daunt F, Afanasyev V, Silk JRD, Wanless S (2006) Extrinsic and intrinsic determinants of winter foraging and breeding phenology in a temperate seabird. Behav Ecol Sociobiol 59:381–388CrossRefGoogle Scholar
  10. Diederichs A, Nehls G, Pedersen IK (2002) Flugzeugzählungen zur großflächigen Erfassung von Seevögeln und marinen Säugern als Grundlage für Umweltverträglichkeitsstudien im Offshorebereich. Seevögel 23:38–46Google Scholar
  11. Dierschke V, Garthe S, Markones N (2004) Aktionsradien Helgoländer Dreizehenmöwen Rissa tridactyla und Trottellummen Uria aalge während der Aufzuchtphase. Vogelwelt 125:11–19Google Scholar
  12. Dierschke J, Dierschke V, Jachmann F, Stühmer F (2007) Ornithologischer Jahresbericht 2006 für Helgoland. Ornithol Jber 17:1–89Google Scholar
  13. Drent RH, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252Google Scholar
  14. Ellis HI, Gabrielsen GW (2002) Energetics of free-ranging seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC, Boca Raton, pp 359–407Google Scholar
  15. Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed-effects and non-parametric models. Chapman and Hall, LondonGoogle Scholar
  16. Forrester R, Andrews I, McInerny C, Murray R, McGowan B, Zonfrillo B, Betts M, Jardine D, Grundy D (2007) The birds of Scotland. Scottish Ornithologists’ Club, AberladyGoogle Scholar
  17. Furness RW, Monaghan P (1987) Seabird ecology. Blackie, Glasgow and LondonGoogle Scholar
  18. Garthe S, Hüppop O (1993) Gulls and Fulmars following ships and feeding on discards at night. Ornis Svecica 3:159–161Google Scholar
  19. Garthe S, Hüppop O (1996) Nocturnal scavenging by gulls in the southern North Sea. Colon Waterbirds 19:232–241CrossRefGoogle Scholar
  20. Garthe S, Benvenuti S, Montevecchi WA (2003) Temporal patterns of foraging activities of Northern Gannets Morus bassanus in the north-west Atlantic. Can J Zool 81:453–461CrossRefGoogle Scholar
  21. Garthe S, Sonntag N, Schwemmer P, Dierschke V (2007) Estimation of seabird numbers in the German North Sea throughout the annual cycle and their biogeographic importance. Vogelwelt 128:163–178Google Scholar
  22. Glutz von Blotzheim UN, Bauer KM (1999) Handbuch der Vögel Mitteleuropas, Band 8 Charadriiformes (3. Teil). AULA-Verlag, WiesbadenGoogle Scholar
  23. Goldstein DL (1990) Energetics of activity and free living in birds. Stud Avian Biol 13:423–426Google Scholar
  24. Golet GH, Irons DB (1999) Raising young reduces body condition and fat stores in Black-legged Kittiwakes. Oecologia 120:530–538CrossRefGoogle Scholar
  25. Grunsky-Schöneberg B (1998) Brutbiologie und Nahrungsökologie der Trottellumme (Uria aalge Pont.) auf Helgoland. Ökol Vögel 20:217–274Google Scholar
  26. Jodice PGR, Roby DD, Suryan RM, Irons DB, Kaufman AM, Turco KR, Visser GH (2003) Variation in energy expenditure among Black-legged Kittiwakes: effects of activity-specific metabolic rates and activity budgets. Physiol Biochem Zool 76:375–388CrossRefPubMedGoogle Scholar
  27. Kahlert J, Desholm M, Clausager I, Petersen IK (2000) Environmental impact assessment of an offshore wind farm at Rødsand: technical report on birds. NERI, KaløGoogle Scholar
  28. Koffijberg K, Dijksen L, Hälterlein B, Laursen K, Potel P, Südbeck P (2006) Breeding birds in the Wadden Sea in 2001—results of the total survey in 2001 and trends in numbers between 1991 and 2001. Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, Joint Monitoring Group of Breeding Birds in the Wadden Sea, WilhelmshavenGoogle Scholar
  29. Markones N, Garthe S, Dierschke V, Adler S (2008) Small-scale temporal variability of seabird distribution patterns in the south-eastern North Sea. In: Wollny-Goerke K, Eskildsen K (eds) Marine mammals and seabirds in front of offshore wind energy. Teubner, Wiesbaden, pp 115–140Google Scholar
  30. Maul AM (1994) Ernährungsweisen und Brutbiologie der Dreizehenmöwe Rissa tridactyla (Linnaeus, 1758) auf Helgoland (diploma thesis). University of Graz, GrazGoogle Scholar
  31. Prüter J (1989) Phänologie und Ernährungsökologie der Dreizehenmöwen (Rissa tridactyla)—Brutpopulation auf Helgoland. Ökol Vögel 11:189–200Google Scholar
  32. Ricklefs RE (1984) Some considerations on the reproductive energetics of pelagic seabirds. Stud Avian Biol 8:84–94Google Scholar
  33. Ropert-Coudert Y, Wilson R (2004) Subjectivity in bio-logging science: do logged data mislead? Mem Natl Inst Polar Res Spec Issue 58:23–33Google Scholar
  34. Ropert-Coudert Y, Grémillet D, Kato A, Ryan PG, Naito Y, Le Maho Y (2004) A fine-scale time budget of Cape Gannets provides insights into the foraging strategies of coastal seabirds. Anim Behav 67:985–992CrossRefGoogle Scholar
  35. Rothery P, Harris MP, Wanless S, Shaw DN (2002) Colony size, adult survival rates, productivity and population projections of Black-legged Kittiwakes Rissa tridacytla on Fair Isle. Atlantic Seabirds 4:17–28Google Scholar
  36. Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM, Moller H, Taylor GA, Foley DG, Block BA, Costa DP (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proc Natl Acad Sci USA 103:12799–12802CrossRefPubMedGoogle Scholar
  37. Shealer DA (2002) Foraging behavior and food of seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC, Boca Raton, pp 137–177Google Scholar
  38. Tasker ML, Furness RW (1996) Estimation of food consumption by seabirds in the North Sea. In: Hunt GLJ, Furness RW (eds) Seabird/fish interactions, with particular reference to seabirds in the North Sea (ICES Cooperative Research Report No. 216). ICES, CopenhagenGoogle Scholar
  39. Tremblay Y, Cherel Y, Oremus M, Tveraa T, Chastel O (2003) Unconventional ventral attachment of time–depth recorders as a new method for investigating time budget and diving behaviour of seabirds. J Exp Biol 206:1929–1940CrossRefPubMedGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2009

Authors and Affiliations

  • Nele Markones
    • 1
    Email author
  • Volker Dierschke
    • 1
  • Stefan Garthe
    • 1
  1. 1.Research and Technology Centre (FTZ)University of KielBüsumGermany

Personalised recommendations