Journal of Ornithology

, Volume 150, Issue 2, pp 483–494 | Cite as

Within-winter movements: a common phenomenon in the Common Pochard Aythya ferina

  • Irene Keller
  • Fränzi Korner-NievergeltEmail author
  • Lukas Jenni
Original Article


Waterbirds are often observed to move between different wintering sites within the same winter—for example, in response to food availability or weather conditions. Within-winter movements may contribute to the spreading of diseases, such as avian influenza, outside the actual migration period. The Common Pochard Aythya ferina seems to be particularly sensitive to infection with the highly pathogenic avian influenza virus H5N1 and, consequently, could play an important role as vectors for the disease. We describe here the within-winter movements of Pochards in Europe in relation to topography, climate, sex and age. We analysed data provided by the Euring data bank on 201 individuals for which records from different locations from the same winter (December–February) were available. The distances and directions moved within the winter varied markedly between regions, which could be ascribed to the differing topography (coast lines, Alps). We found no significant differences in terms of distances and directions moved between the sexes and only weak indications of differences between the age classes. In Switzerland, juveniles moved in more westerly directions than adults. During relatively mild winters, winter harshness had no effect on the distances travelled, but in cold winters, a positive relationship was observed, a pattern possibly triggered by the freezing of lakes. Winter harshness did not influence the directions of the movement. About 41% (83/201) of the Pochards that were recovered at least 1 km from the ringing site had moved more than 200 km. A substantial number of birds moved between central/southern Europe and the north-western coast of mainland Europe, and between the north-western coast of mainland Europe and Great Britain, whereas no direct exchange between Great Britain and central/southern Europe was observed. Within-winter movements of Pochards seem to be a common phenomenon in all years and possibly occur as a response to the depletion of food resources. This high tendency to move could potentially contribute to the spread of bird-transmitted diseases outside the actual migration period.


Distances and directions of winter movements Exchange of Pochards between European regions within winter Ring recovery analysis Waterbird Winter harshness 



We thank Euring and, in particular, Chris du Feu, for providing the data. We are grateful to Marc Kéry, Michael Schaub, Annette Sauter, Dominik Thiel, Elisabeth Wiprächtiger and Arie van Noordwijk for their support and helpful discussions. Verena Keller, Barbara Tschirren and an anonymous reviewer provided valuable comments on an earlier draft of this manuscript.


  1. Agostinelli C (2006) Circular statistics. R package: circular statistics. In: Jammalamadaka SR, SenGupta A (eds) Topics in circular statistics. World Scientific, SingaporeGoogle Scholar
  2. Alerstam T (1990) Bird migration. Cambridge University Press, CambridgeGoogle Scholar
  3. Baker H, Stroud DA, Aebischer NJ, Cranswick PA, Gregory RD, McSorley CA, Noble DG, Rehfisch MM (2006) Population estimates of birds in Great Britain and the United Kingdom. Br Birds 99:25–44Google Scholar
  4. Batschelet E (1981) Circular statistics in biology. Academic Press, LondonGoogle Scholar
  5. Berthold P (2000) Vogelzug, Eine aktuelle Gesamtübersicht. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  6. Bezzel E (1959) Beiträge zur Biologie der Geschlechter bei Entenvögeln. Anz Ornithol Ges Bayern 5:269–355Google Scholar
  7. Bezzel E (1969) Die Tafelente (Aythya ferina). Die neue Brehm-Bücherei, vol 405. A. Ziemsen-Verlag, Wittenberg LutherstadtGoogle Scholar
  8. Blums P, Baumanis J (1990) Migration and geographical distribution of Pochard and Tufted Duck populations in the USSR. In: Vìcksne J, Vilks I (eds) Baltic birds 5, ecology migration and protection of Baltic birds, vol I. Publisher Riga, Riga, pp 49–57Google Scholar
  9. Carbone C, Owen M (1995) Differential migration of the sexes of Pochard Aythya ferina: results from a European survey. Wildfowl 46:99–108Google Scholar
  10. del Hoyo J, Elliot A, Sargatal J (1992) Handbook of the birds of the world, vol 1: Ostrich to ducks. Lynx Editions, BarcelonaGoogle Scholar
  11. Delany S, Veen J, Clark J (2006) Urgent preliminary assessment of ornithological data relevant to the spread of avian influenza in Europe. Wetlands International. Available at:
  12. Federal Veterinary Office (2007) Schweizer Zoonosebericht 2006. BVET Magazin 3:12–14Google Scholar
  13. Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, CambridgeGoogle Scholar
  14. Glutz von Blotzheim UN, Bauer KM (1991) Handbuch der Vögel Mitteleuropas 12/1(3). AULA, WiesbadenGoogle Scholar
  15. Glutz von Blotzheim UN, Bauer K, Bezzel E (1985) Handbuch der Vögel Mitteleuropas, vol 10/1. AULA, WiesbadenGoogle Scholar
  16. Hamilton DJ, Ankney CD, Bailey RC (1994) Predation of Zebra Mussels by diving ducks: an exclosure study. Ecology 75:521–531CrossRefGoogle Scholar
  17. Heine G, Jacoby H, Leuzinger H, Stark H (1999) Die Vögel des Bodenseegebietes. Vorkommen und Bestand der Brutvögel, Durchzügler und Wintergäste. Ornithol Jahreshefte Baden-Württemberg 14/15:847Google Scholar
  18. Hepp GR, Hines JE (1991) Factors affecting winter distribution and migration distance of Wood Ducks from southern breeding populations. Condor 93:884–891CrossRefGoogle Scholar
  19. Hofer J, Korner-Nievergelt F, Korner-Nievergelt P, Kestenholz M, Jenni L (2006) Herkunft und Zugverhalten von in der Schweiz überwinternden oder durchziehenden Tafelenten Aythya ferina. Ornithol Beob 103:65–86Google Scholar
  20. Ijnsen F (1988) Het karakterisieren van winters. Zenit 15:50–58Google Scholar
  21. Imboden C, Imboden D (1972) Formel für Orthodrome und Loxodrome bei der Berechnung von Richtung und Distanz zwischen Beringungs- und Wiederfundort. Vogelwarte 26:336–346Google Scholar
  22. Impekoven MZ (1965) Verbreitung und Fluchtmigration von Krickenten in den kalten Wintern 1956 und 1962/63: Eine vergleichende Analyse der Rückmeldungen in la Tour du Valant. Trans Conf Int Union Game Biol 6:293–307Google Scholar
  23. Keller V (2005) Entwicklung der Wasservogelbestände in den Wasservogelreservaten von internationaler Bedeutung 1992/93–2002/03: Eine Bilanz. Schweizerische Vogelwarte, SempachGoogle Scholar
  24. Keller V, Burkhardt M (2007) Monitoring Überwinternde Wasservögel: Ergebnisse der Wasservogelzählungen 2005/06 in der Schweiz. Schweizerische Vogelwarte, Sempach,Google Scholar
  25. Kershaw M (2002) Common Pochard (Pochard) Aythya ferina. In: Wernham C, Toms M, Marchant J, Clark J, Siriwardena G, Baillie S (eds) The migration atlas movements of the birds of Britain and Ireland. T&A D Poyser, London, pp 204–207Google Scholar
  26. Kestenholz M (1995) Movements and roosting behaviour of diving ducks (Aythya fuligula and A. ferina) wintering in Switzerland. Philosophisch-Naturwissenschaftliche Fakultät, Universität BaselGoogle Scholar
  27. Kestenholz M (1999) Mid-winter movements: a behavioural strategy of diving ducks wintering in a changing environment. Ring 21:26Google Scholar
  28. Kinzelbach R (1992) The main features of the phylogeny and dispersal of the Zebra Mussel Dreissena polymorpha. Gustav Fischer Verlag, StuttgartGoogle Scholar
  29. Lovvorn JR (1989) Distributional response of Canvasback Ducks to weather and habitat change. J Appl Ecol 26:113–130CrossRefGoogle Scholar
  30. Lovvorn JR (1994) Nutrient reserves, probability of cold spells and the question of reserve regulation in wintering Canvasbacks. J Anim Ecol 63:11–23CrossRefGoogle Scholar
  31. Monval JY, Pirot JY (1989) Results of the IWRB international waterfowl census 1967–1986. International Waterfowl Research Bureau special publication no. 8. IWRB, SlimbridgeGoogle Scholar
  32. Nilsson L (1984) The impact of hard winters on waterfowl populations of south Sweden. Wildfowl 35:71–80Google Scholar
  33. Ogilvie MA (1981) Hard weather movements of Anas crecca ringed in western Europe—a preliminary computer analysis. In: Proc IWRB Symp. International Waterfowl Research Bureau, Alushta Google Scholar
  34. Ogilvie MA (1982) Winter 1978/79 hard weather movements and mortality of ducks ringed in the United Kingdom. In: Proc 2nd Tech Meet Western Palearctic Migratory Bird Manage. International Waterfowl Research Bureau, ParisGoogle Scholar
  35. Owen M, Black JM (1990) Waterfowl ecology. Chapman & Hall, New YorkGoogle Scholar
  36. Owen M, Dix M (1986) Sex ratios in some common British wintering ducks. Wildfowl 37:104–112Google Scholar
  37. Perdeck AC (1977) The analysis of ringing data: pitfalls and prospects. Vogelwarte 29[Sonderheft]: 33–44Google Scholar
  38. Perdeck AC, Clason C (1983) Sexual differences in migration and winter quarters of ducks ringed in the Netherlands. Wildfowl 34:137–143Google Scholar
  39. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  40. Ridgill SC, Fox AD (1990) Cold weather movements of waterfowl in Western Europe. International Waterfowl Research Bureau special publication 13. IWRB, Slimbridge, pp 1–89Google Scholar
  41. Rose PM, Scott DA (1994) Waterfowl population estimates. International Waterfowl Research Bureau special publication 29. IWRB, SlimbridgeGoogle Scholar
  42. Rustamov EA (1994) The wintering waterfowl of Turkmenistan. Wildfowl 45:242–247Google Scholar
  43. Sayler RD, Afton AD (1981) Ecological aspects of Common Goldeneyes Bucephala clangula wintering on the upper Mississippi River. Ornis Scand 12:99–108CrossRefGoogle Scholar
  44. Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and Western Eurasia. Wetlands International Publication, OxfordGoogle Scholar
  45. Suter W (1982) Die Bedeutung von Untersee-Ende/Hochrhein (Bodensee) als wichtiges Überwinterungsgewässer für Tauchenten (Aythya, Bucephala) und Blässhuhn (Fulica atra). Ornithol Beob 79:73–96Google Scholar
  46. Suter W, Van Eerden MR (1992) Simultaneous mass starvation of wintering diving ducks in Switzerland and the Netherlands: a wrong decision in the right strategy? Ardea 80:229–242Google Scholar
  47. Tamisier A (1985) Hunting as a key environmental parameter for the Western Palearctic duck population. Wildfowl 36:95–103Google Scholar
  48. Thomson D, Conroy M (2007) Euring 2007, Technical meeting. January 14–20 2007, Dunedin, New ZealandGoogle Scholar
  49. Turner H, Kuiper JGJ, Thew N, Bernasconi R, Rüetschi J, Wüthrich M, Gosteli M (1998). Mollusca, Atlas. Centre Suisse de Cartographie de la Faune (CSCF/SZKF), NeuchâtelGoogle Scholar
  50. Werner S, Mörtl M, Bauer HG, Rothhaupt KO (2005) Strong impact of wintering waterbirds on Zebra Mussels (Dreissena polymorpha) populations at Lake Constance, Germany. Freshw Biol 50:1412–1426CrossRefGoogle Scholar
  51. Wernham C, Toms M, Marchant J, Clark J, Siriwardena G, Baillie S (2002) The Migration Atlas: movements of the birds of Britain and Ireland. T.& A.D, Poyser, LondonGoogle Scholar
  52. Willi P (1970) Zugverhalten, Aktivität, Nahrung und Nahrungserwerb auf dem Klingnauerstausee häufig auftretender Anatiden, insbesondere von Krickente, Tafelente und Reiherente. Ornithol Beob 67:141–217Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2009

Authors and Affiliations

  • Irene Keller
    • 1
    • 2
  • Fränzi Korner-Nievergelt
    • 1
    Email author
  • Lukas Jenni
    • 1
  1. 1.Schweizerische VogelwarteSempachSwitzerland
  2. 2.Eawag, Department of Aquatic Ecology and Department of Fish Ecology and EvolutionDübendorfSwitzerland

Personalised recommendations