Journal of Ornithology

, Volume 150, Issue 2, pp 357–367

Use of mitochondrial and nuclear genes to infer the origin of two endemic pigeons from the Canary Islands

  • Javier Gonzalez
  • Guillermo Delgado Castro
  • Eduardo Garcia-del-Rey
  • Carola Berger
  • Michael Wink
Original Article

Abstract

DNA nucleotide sequences from two mitochondrial genes (cytochrome b and NADH dehydrogenase subunit 2) and the nuclear intron 7 of β-fibrinogen were obtained to infer the phylogenetic origin of the two endemic Canarian pigeons: Bolle’s Pigeon (Columba bollii) and Laurel Pigeon (C. junoniae). Phylogenetic analyses of mitochondrial and nuclear genes based on maximum parsimony, maximum likelihood and Bayesian inference all converged into a congruent topology: C. bollii clusters together with the Wood Pigeon (C. palumbus) which is common in Europe and Asia, while C. junoniae was found near the base of the clade that includes other species of the genus Columba from the Old World. Laurel Pigeon probably represents an old lineage that might have colonized the Canary Islands a long time ago (20 My) while Bolle’s Pigeon might have arrived on the archipelago much later during the Upper Miocene (5 My).

Keywords

Columba Mitochondrial DNA β-Fibrinogen intron 7 Phylogeny Canary Islands 

Supplementary material

10336_2008_360_MOESM1_ESM.pdf (139 kb)
ESM (PDF 139 kb)

References

  1. Alcover JA, Florit X (1989) The birds from the archaeological site of La Aldea, Gran Canaria. Bull Inst Cat Hist Nat 56:47–55Google Scholar
  2. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415PubMedCrossRefGoogle Scholar
  3. Arévalo JR, Delgado JD, Fernández-Palacios JM (2007) Variation in fleshy fruit fall composition in an island laurel forest of the Canary Islands. Acta Oecol 32:152–160CrossRefGoogle Scholar
  4. Broders O, Osborne T, Wink M (2003) A mtDNA phylogeny of bustards (family Otididae) based on nucleotide sequences of the cytochrome b-gene. J Ornithol 144:176–185CrossRefGoogle Scholar
  5. Carracedo JC, Pérez FJ, Ancochea E, Meco J, Hernán F, Cubas CR, Casillas R, Rodríguez E, Ahijado A (2002) Cenozoic volcanism II: The Canary Islands. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society of London, pp 439–472Google Scholar
  6. Castillo C, López M, Martín M, Rando JC (1996) La paleontología de vertebrados en Canarias. Rev Esp Paleontol no Extraordinario, pp 237–247Google Scholar
  7. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158CrossRefGoogle Scholar
  8. Clarke T (2006) Birds of the Atlantic islands. Christopher Helm, LondonGoogle Scholar
  9. Clayton DH, Johnson KP (2003) Linking coevolutionary history to ecological process: doves and lice. Evolution 57:2335–2341PubMedGoogle Scholar
  10. Coello J, Cantagrel JM, Hernán F, Fúster JM, Ibarrola E, Ancochea E, Casquet C, Jamond C, Díaz de Téran JR, Cendrero A (1992) Evolution of the eastern volcanic ridge of the Canary Islands based on new K–Ar data. J Volcanol Geotherm Res 53:251–274CrossRefGoogle Scholar
  11. del Hoyo J, Elliott A, Sargatal J (1997) Handbook of the birds of the world, vol 4. Sandgrouse to cuckoos. Lynx, BarcelonaGoogle Scholar
  12. Dietzen C, Witt H-H, Wink M (2003) The phylogeographic differentiation of the European robin Erithacus rubecula on the Canary Islands revealed by mitochondrial DNA sequence data and morphometrics: evidence for a new robin taxon on Gran Canaria? Avian Sci 3:115–131Google Scholar
  13. Dietzen C, Voigt C, Wink M, Gahr M, Leitner S (2005) Phylogeography of island canary (Serinus canaria) populations. J Ornithol 147:485–494CrossRefGoogle Scholar
  14. Dietzen C, Garcia-del-Rey E, Delgado G, Wink M (2008a) Phylogenetic differentiation of Sylvia species (Aves: Passeriformes) of the Atlantic islands (Macaronesia) based on mitochondrial DNA sequence data and morphometrics. Biol J Linn Soc 95:157–174CrossRefGoogle Scholar
  15. Dietzen C, Garcia-del-Rey E, Delgado G, Wink M (2008b) Phylogeography of the blue tit (Parus teneriffae—group) on the Canary Islands based on mitochondrial DNA sequence data and morphometrics. J Ornithol 149:1–12CrossRefGoogle Scholar
  16. Emmerson KW, Martin A, Delgado G, Quilis V (1986) Distribution and some aspects of the breeding biology of Bolle’s pigeon (Columba bollii) on Tenerife. Die Vogelwelt 107:52–65Google Scholar
  17. Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547PubMedCrossRefGoogle Scholar
  18. Friesen VL (2000) Introns. In: Baker AJ (ed) Molecular methods in ecology. Blackwell, Oxford, pp 274–294Google Scholar
  19. Garcia-del-Rey E, Delgado G, Gonzalez J, Wink M (2007) Canary Island great spotted woodpecker (Dendrocopos major) has distinct mtDNA. J Ornithol 148:531–536CrossRefGoogle Scholar
  20. Gibbs D, Barnes E, Cox J (2001) Pigeons and doves. A guide to the pigeons and doves of the world. Pica Press, SussexGoogle Scholar
  21. Gonzalez J, Wink M, Garcia-del-Rey E, Delgado G (2008) Evidence from DNA nucleotide sequences and ISSR profiles indicates paraphyly in subspecies of southern grey shrike (Lanius meridionalis). J Ornithol 149:495–506CrossRefGoogle Scholar
  22. Goodwin D (1959) Taxonomy of the genus Columba. Bull Brit Mus (Nat Hist) Zool 6. In: Goodwin D (1977) Pigeons and doves of the world, 2nd edn. British Museum (Natural History). Cornell University Press, IthacaGoogle Scholar
  23. Goodwin D (1977) Pigeons and doves of the world, 2nd edn. British museum (natural history). Cornell University Press, IthacaGoogle Scholar
  24. Goodwin D (1983) Pigeons and doves of the world, 3rd edn. British museum (natural history). Cornell University Press, IthacaGoogle Scholar
  25. Grosso AR, Bastos-Silveira C, Coelho MM, Dias D (2006) Columba palumbus cyt b-like numt sequence: comparison with functional homologue and the use of universal primers. Folia Zool 55:131–144Google Scholar
  26. Haddrath O, Baker AJ (2001) Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc R Soc Lond B 268:939–945CrossRefGoogle Scholar
  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  28. Hasegawa M, Kishino H, Yano T (1985) Dating the human–ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  29. Hedges SB, Parker PH, Sibley CG, Kumar S (1996) Continental breakup and the ordinal diversification of birds and mammals. Nature 381:226–229PubMedCrossRefGoogle Scholar
  30. Hernández MA, Martín A (2003) BWP update. The birds of western Palearctic, vol 5. Oxford University Press, Oxford, pp 215–228Google Scholar
  31. Hugall AF, Foster R, Lee MSY (2007) Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Syst Biol 56:543–563PubMedCrossRefGoogle Scholar
  32. Jacobs BF (2004) Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos Trans R Soc Lond B 359:1573–1583CrossRefGoogle Scholar
  33. Johnson KP, Clayton DH (2000) Nuclear and mitochondrial genes contain similar phylogenetic signal for pigeons and doves (Aves: Columbiformes). Mol Phylogenet Evol 14:141–151PubMedCrossRefGoogle Scholar
  34. Johnson KP, De Kort S, Dinwoodey K, Mateman AC, Ten Cate C, Lessells CM, Clayton DH (2001) A molecular phylogeny of the dove genera Streptopelia and Columba. Auk 118:874–887CrossRefGoogle Scholar
  35. Johnson KP, Adams RJ, Page RDM, Clayton DH (2003) When do parasites fail to speciate in response to host speciation? Syst Biol 52:37–47PubMedCrossRefGoogle Scholar
  36. Kishino H, Thorne JL, Bruno WJ (2001) Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18:352–361PubMedGoogle Scholar
  37. Kvist L, Broggi J, Illera JC, Koivula K (2005) Colonization and diversification of the blue tits (Parus caeruleus teneriffae—group) in the Canary Islands. Mol Phylogenet Evol 34:501–511PubMedCrossRefGoogle Scholar
  38. Lovette IJ (2004) Mitochondrial dating and support for the 2% rule in birds. Auk 121:1–6CrossRefGoogle Scholar
  39. Machado MC (1996) Reconstrucción paleoecológica y etnoarqueológica por medio del análisis antracológico. La Cueva de Villaverde, Fuerteventura. In: Ramil-Rego P, Fernández Rodríguez C, Rodríguez Guitián M (eds) Biogeografía pleistocena-holocena de la Península Ibérica. Junta de Galicia, Santiago de Compostela, Spain, pp 261–274Google Scholar
  40. Martín A, Lorenzo JA (2001) Aves del archipiélago canario. Francisco Lemus Editor, La LagunaGoogle Scholar
  41. Martín A, Hernández MA, Lorenzo JA, Nogales M, González C (2000) Las palomas endémicas de Canarias. Consejería de Política Territorial y Medio Ambiente del Gobierno de Canarias and SEO/BirdLife. Santa Cruz de Tenerife, SpainGoogle Scholar
  42. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  43. Médail F, Quézel P (1999) The phytogeographical significance of S.W. Morocco compared to the Canary Islands. Plant Ecol 140:221–244CrossRefGoogle Scholar
  44. Moore WS, DeFilippis VR (1997) The window of taxonomic resolution for phylogenies based on mitochondrial cytochrome b. In: Mindell DP (ed) Avian molecular evolution and systematics. Academic Press, San Diego, pp 83–119CrossRefGoogle Scholar
  45. Päckert M, Dietzen C, Martens J, Wink M, Kvist L (2006) Radiation of Atlantic goldcrests Regulus regulus spp.: evidence of a new taxon from the Canary Islands. J Avian Biol 37:364–380CrossRefGoogle Scholar
  46. Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583PubMedGoogle Scholar
  47. Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23:1731–1740PubMedCrossRefGoogle Scholar
  48. Pereira SL, Johnson KP, Clayton DH, Baker AJ (2007) Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleogene. Syst Biol 56:656–672PubMedCrossRefGoogle Scholar
  49. Rando JC, Perera MA (1994) Primeros datos de ornitofagia entre los aborígenes de Fuerteventura (Islas Canarias). Archaeofauna 3:13–19Google Scholar
  50. Rodríguez O (2005) Flora y vegetación terrestre. La transformación del paisaje vegetal. In: Rodríguez O (ed) Patrimonio Natural de la isla de Fuerteventura. Litografía Romero, Tenerife, pp 141–143Google Scholar
  51. Rodríguez O, García A, Reyes JA (2000) Estudio fitosociológico de la vegetación actual de Fuerteventura (islas Canarias). Vieraea 28:61–104Google Scholar
  52. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  53. Rutschmann F, Eriksson T, Salim KA, Conti E (2007) Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. Syst Biol 56:591–608PubMedCrossRefGoogle Scholar
  54. Santos A (1989) Bosques de laurisilva en la región macaronésica. Consejo de EuropaGoogle Scholar
  55. Shapiro B, Sibthorpe D, Rambaut A, Austin J, Wragg GM, Bininda-Emonds ORP, Lee PLM, Cooper A (2007) Flight of the dodo. Science 295:1683CrossRefGoogle Scholar
  56. Shields GF, Wilson AC (1987) Calibration of mitochondrial DNA evolution in geese. J Mol Evol 24:212–217PubMedCrossRefGoogle Scholar
  57. Stresemann E (1927–1934) Aves. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie. Walter de Gruyter, Berlin, pp 646–647Google Scholar
  58. Sunding P (1979) Origins of the Macaronesian flora. In: Bramwell D (ed) Plants and islands. Academic Press, New York, pp 13–40Google Scholar
  59. Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (and other methods), version 4.0b10a. Sinauer, SunderlandGoogle Scholar
  60. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology—DNA sequence analysis. American Mathematical Society, Providence, pp 57–86Google Scholar
  61. Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst Biol 51:689–702PubMedCrossRefGoogle Scholar
  62. Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of evolution. Mol Biol Evol 15:1647–1657PubMedGoogle Scholar
  63. van Tuinen M, Sibley CG, Hedges SB (1998) Phylogeny and biogeography of ratite birds inferred from DNA sequences of mitochondrial ribosomal genes. Mol Biol Evol 15:370–376PubMedGoogle Scholar
  64. Volsøe H (1955) The breeding birds of the Canary Islands II. Origin and history of the Canarian avifauna. Vidensk Medd Dansk Nat Foren 117:117–178Google Scholar
  65. Wiegmann BM, Yeates DK, Throne JL, Kishino H (2003) Time flies, a new molecular time-scale for brachyceran fly evolution without a clock. Syst Biol 52:745–756PubMedCrossRefGoogle Scholar
  66. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400CrossRefGoogle Scholar
  67. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel H (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2008

Authors and Affiliations

  • Javier Gonzalez
    • 1
  • Guillermo Delgado Castro
    • 2
  • Eduardo Garcia-del-Rey
    • 3
  • Carola Berger
    • 1
  • Michael Wink
    • 1
  1. 1.Institut für Pharmazie und Molekulare BiotechnologieRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  2. 2.Museo de Ciencias Naturales, Organismo Autónomo de Museos y CentrosCalle Ramón y Cajal, Edificio SalesianosSanta Cruz de TenerifeSpain
  3. 3.Departamento de Ecología, Facultad de BiologíaUniversidad de La LagunaTenerifeSpain

Personalised recommendations