Journal of Ornithology

, Volume 150, Issue 2, pp 419–430 | Cite as

Phylogeny and phylogeography of critically endangered Gyps species based on nuclear and mitochondrial markers

  • Muhammad ArshadEmail author
  • Javier Gonzalez
  • Abdel Aziz El-Sayed
  • Tim Osborne
  • Michael Wink
Original Article


Populations of Oriental White-backed Vulture (Gyps bengalensis) and Long-billed Vulture (Gyps indicus) dramatically declined by 95–100% on the Indian subcontinent in mid-1990s. The present study was conducted to discover the phylogeny and phylogeography of Gyps species based on nuclear (recombination activating gene, RAG-1) and mitochondrial (cytochrome b, cytb) markers. Gyps species showed monophyly and no geographic partition was observed within the three groups of Gyps species (G. bengalensis, G. indicus and G. fulvus) despite the large sample size available (n = 149). Our study supports the treatment of G. indicus and G. tenuirostris as separate species. In all analyses, the earliest divergence separated G. bengalensis from all other Gyps taxa while a sister relationship was supported between G. fulvus and G. rueppellii, and these two taxa together were sister group to a clade consisting of G. indicus, G. tenuirostris and G. coprotheres. Molecular clock estimates of both nuclear and mitochondrial (RAG-1, cytb) genes indicated a rapid and recent diversification within the Gyps species.


Phylogeny Phylogeography Gyps species Cytochrome b RAG-1 



This Project was supported by a fellowship of the Deutscher Akademischer Austausch Dienst to M.A. We are very grateful to many people who helped us with the field work, especially the Ministry of Environment and Tourism Namibia for permission to collect and export the samples. We thank Hedi Sauer-Gürth for her help in the laboratory as well as Theodor C. H. Cole for improving this manuscript. We thank Prof. Dr. H. Bock (Managing Director of IWR) and S. Friedel for access to parallel computing facilities at the interdisciplinary center for Scientific Computing (IWR, Heidelberg University). Finally, we greatly appreciate the constructive comments of anonymous referee to improve the final manuscript.

Supplementary material

10336_2008_359_MOESM1_ESM.xls (44 kb)
Origin, collection codes and accession numbers of taxa sequenced in this study. Haplotype names correspond to those in Fig. 4 (XLS 44 kb)
10336_2008_359_MOESM2_ESM.xls (20 kb)
Accession numbers of sequences retrived from GenBank (XLS 19 kb)


  1. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis–coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415PubMedCrossRefGoogle Scholar
  2. Amadon D (1977) Notes on the taxonomy of vultures. Condor 79:413–416CrossRefGoogle Scholar
  3. Arctander P, Johanson C, Coutellec-Vreto MA (1999) Phylogeography of three closely related African bovids (tribe Alcelaphini). Mol Biol Evol 16:1724–1739PubMedGoogle Scholar
  4. Bandelt HJ, Forster P, Rbhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  5. Brown LH, Amadon D (1968) Eagles, hawks and falcons of the world. Country Life Books, LondonGoogle Scholar
  6. del Hoyo J, Elliott A, Sargatal J (1994) Handbook of the birds of the world, vol 2. Barcelona: Lynx edicions Google Scholar
  7. de Menocal PB (1995) Plio–Pleistocene African climate. Science 270:53–59CrossRefGoogle Scholar
  8. de Menocal PB (2004) African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet Sci Lett 220:3–24CrossRefGoogle Scholar
  9. Dietzen C, Witt H-H, Wink M (2003) The phylogeographic differentiation of the European robin Erithacus rubecula on the Canary Islands revealed by mitochondrial DNA sequence data and morphometrics: evidence for a new robin taxon on Gran Canaria? Avian Sci 3:115–131Google Scholar
  10. El-Sayed AA (2007) Phylogenetic relationships of diurnal raptors based on nucleotide sequences of cytochrome b and RAG-1 genes. PhD dissertation, University of Heidelberg, GermanyGoogle Scholar
  11. Ferguson-Lees IJ, Christie DA (2001) Raptors of the world. Christopher Helm, LondonGoogle Scholar
  12. Fritz U, Auer M, Bertolero A, Cheylan M, Fattizzo T, Hundsdörfer AK, Sampayo MM, Pretus JL, Široký P, Wink M (2006) A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zool Scripta 35:531–543CrossRefGoogle Scholar
  13. Gilbert M, Virani MZ, Watson RT, Oaks JL, Benson PC, Khan AA, Ahmed S, Chaudhary J, Arshad M, Mahmood S, Shah QA (2002) Breeding and mortality of Oriental white–backed vulture Gyps bengalensis in Punjab Province, Pakistan. Bird Conserv Int 12:311–326CrossRefGoogle Scholar
  14. Griffiths CS, Barrowclough GF, Groth JG, Mertz LA (2007) Phylogeny, diversity and classification of the Accipitridae based on DNA sequences of the RAG-1 exon. J Avian Biol 38:587–602Google Scholar
  15. Groth JG, Barrowclough GF (1999) Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol 12:115–123PubMedCrossRefGoogle Scholar
  16. Grubh RB, Narayam G, Satheesan SM (1990) Conservation of vulture in India. In: Daniel JC, Serrao JS (eds) Bombay natural history society. Oxford University Press, OxfordGoogle Scholar
  17. Hall T (2004) BioEdit: version 7.0.0. Ibis Therapeutics, Carlsbad, CAGoogle Scholar
  18. Handschuh M (2007) Schutzbemühungen für kritisch bedrohte Geier in Kambodscha. ZGAP 2:3–5Google Scholar
  19. Helbig AJ, Kocum A, Seibold I, Braun MJ (2005) A multi-gene phylogeny of aquiline eagles (Aves: Accipitriformes) reveals extensive paraphyly at the genus level. Mol Phylogenet Evol 35:147–164PubMedCrossRefGoogle Scholar
  20. Houston DC (1974) Food searching in griffon vultures. East Afr Wildl J 12:63–77Google Scholar
  21. Houston DC (1983) The adaptive radiation of the griffon vultures. In: Wilbur SR, Jackson JA (eds) Vulture biology and management. University of California Press, Berkeley, pp 360–363Google Scholar
  22. Houston DC (1985) Indian white–backed vulture (G. bengalensis). In: Newton I, Chancellor RD (eds) Conservation studies on raptors, technical publication no. 5 International council for bird preservation, Cambridge, UK. pp 465–466Google Scholar
  23. Hume AO (1869) My scrap book: or rough notes on Indian zoology and ornithology. Baptist Mission Press, CalcuttaGoogle Scholar
  24. Hume AO (1873) Contributions to the ornithology of India, Sindh. Stray Feathers 1:91–289Google Scholar
  25. Irestedt M, Johansson Ulf S, Parsons Thomas J, Ericson Per GP (2001) Phylogeny of major lineages of suboscines (Passeriformes) analysed by nuclear DNA sequence data. J Avian Biol 32:15–25CrossRefGoogle Scholar
  26. IUCN (2006) IUCN red list of threatened species.
  27. Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass dominated ecosystems. Ann Mo Bot Gard 86:590–643CrossRefGoogle Scholar
  28. Jerdon TC (1871) Supplementary notes to the birds of India. Ibis 1:234–247Google Scholar
  29. Johnson JA, Lerner HRL, Rasmussen PC, Mindell DP (2006) Systematics within Gyps vultures: a clade at risk. BMC Evol Biol 6:65CrossRefGoogle Scholar
  30. Karl SA, Bowen BW (1999) Evolutionary significant units versus geopolitical taxonomy: molecular systematics of an endangered sea turtle (genus Chelonia). Conserv Biol 13:990–999CrossRefGoogle Scholar
  31. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200PubMedCrossRefGoogle Scholar
  32. Lerner HRL, Mindell DP (2005) Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Mol Phylogenet Evol 37:327–346PubMedCrossRefGoogle Scholar
  33. Lovette IJ (2004) Mitochondrial dating and mixed support for the 2% rule in birds. Auk 121:1–6CrossRefGoogle Scholar
  34. Matthee CA, Davis SK (2001) Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective. Mol Biol Evol 18:1220–1230PubMedGoogle Scholar
  35. Mindell DP, Thacker CE (1996) Rates of molecular evolution: phylogenetic issues and applications. Annu Rev Ecol Syst 27:279–303CrossRefGoogle Scholar
  36. Mundy P, Butchart D, Ledger J, Piper S (1992) The vultures of Africa. Academic Press, LondonGoogle Scholar
  37. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJI, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–632PubMedCrossRefGoogle Scholar
  38. Pain DJ, Cunningham AA, Donald PF, Duckworth JW, Houston DC, Katzner T, Parry-Jones J, Poole C, Prakash V, Round P, Timmins R (2003) Causes and effects of temporospatial declines of Gyps vulture in Asia. Conserv Biol 17:661–671CrossRefGoogle Scholar
  39. Pereira SL, Baker AJ (2006) A mitogenomics timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23:1731–1740PubMedCrossRefGoogle Scholar
  40. Posada D, Crandall KA (1998) Model test: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  41. Purvis A, Gittleman JL, Brooks T (2005) Phylogeny and conservation. Cambridge University Press, CambridgeGoogle Scholar
  42. Rasmussen PC, Anderton JC (2005) Birds of South Asia, the Ripley Guide, vol 2: attributes and status. Smithsonian Institute, Washington DCGoogle Scholar
  43. Rasmussen PC, Clark WS, Parry SJ (2001) Field identification of Long–billed Vulture (Indian and slender–billed vultures). Orient Bird Club 34:24–29Google Scholar
  44. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  45. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  46. Seibold I, Helbig AJ (1995) Evolutionary history of New and Old World vultures inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Philos Trans R Soc Lond B 350:163–178CrossRefGoogle Scholar
  47. Shields GF, Wilson AC (1987) Calibration of mitochondrial DNA evolution in geese. J Mol Evol 24:212–217PubMedCrossRefGoogle Scholar
  48. Shultz S, Baral HS, Charman S, Cunningham AA, Das D, Ghalsasi GR, Goudar MS, Green RE, Jones A, Nighot P, Pain DJ, Prakash V (2004) Diclofenac poisoning is widespread in declining vulture population across the Indian subcontinent. Proc R Soc Lond B 271:458–460CrossRefGoogle Scholar
  49. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114PubMedCrossRefGoogle Scholar
  50. Swan GE, Naido V, Cuthbert R, Green RE, Pain DJ, Swarup D, Prakash V, Taggart M, Bekker L, Das D, Diekmann J, Diekmann M, Killian E, Meharg A, Patra RC, Saini M, Wolter K (2006) Removing the threat of diclofenac to critically endangered Asian vultures. Plos Biol 4:e66PubMedCrossRefGoogle Scholar
  51. Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (and other methods), version 4.0b10a. Sinauer, SunderlandGoogle Scholar
  52. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  53. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MAGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  54. Thiollay JM (1994) Family Accipitridae (hawks and eagles). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world. Lynx Ediciones, Barcelona, pp 52–205Google Scholar
  55. Vrba ES (1985) African Bovidae: evolutionary events since the Miocene. S Afr J Sci 81:263–266Google Scholar
  56. Wink M (1995) Phylogeny of Old and New World vultures (Aves: Accipitridae and Cathartidae) inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Z Naturforsch 50c:868–882Google Scholar
  57. Wink M, Sauer-Gürth H (2004) Phylogenetic relationships in diurnal raptors based on nucleotide sequences of mitochondrial and nuclear marker genes In: Chancellor RD, Meyburg BU (eds) Raptors worldwide. WWGBP, Berlin, pp 483–498Google Scholar
  58. Wink M, Kuhn M, Sauer-Gürth H, Witt H-H (2002) Ein Eistaucher (Gavia immer) bei Düren–Fundgeschichte und erste genetische Herkunftsuntersuchungen. Charadrius 38:239–245Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2008

Authors and Affiliations

  • Muhammad Arshad
    • 1
    Email author
  • Javier Gonzalez
    • 1
  • Abdel Aziz El-Sayed
    • 1
  • Tim Osborne
    • 2
  • Michael Wink
    • 1
  1. 1.Department of Biology, Institute of Pharmacy and Molecular Biotechnology (IPMB)University of HeidelbergHeidelbergGermany
  2. 2.OutjoNamibia

Personalised recommendations