Journal of Ornithology

, Volume 150, Issue 1, pp 205–220 | Cite as

The Taiwan Firecrest (Regulus goodfellowi) belongs to the Goldcrest assemblage (Regulus regulus s. l.): evidence from mitochondrial DNA and the territorial song of the Regulidae

  • Martin Päckert
  • Jochen Martens
  • Lucia Liu Severinghaus
Original Article

Abstract

We evaluated the phylogenetic relationships of the Taiwan Firecrest or Flamecrest, Regulus goodfellowi, on the basis of two mitochondrial markers (cytochrome b, 16S rRNA) and territorial song. Genetic samples from eighteen subspecies of all currently accepted crest and kinglet species were available for comparison. In all molecular tree reconstructions it was clearly apparent the Taiwan endemic species was the sister species of all the palearctic Goldcrests (Regulus regulus) from Bayesian inference of phylogeny, although with weak bootstrap support and conflicting position in the ML and NJ trees. Genetic distances based on cyt-b sequences between R. goodfellowi and subspecies of R. regulus ranged between 6.1 and 8.2%. Two separate divergence time estimates dated the colonization of Taiwan to the mid to late Pliocene from 5–2 Mya. The high-pitched territorial songs of R. goodfellowi strongly resemble those of Sino-Himalayan Goldcrests (ssp. himalayensis, sikkimensis, and yunnanensis), but the terminal flourish typical of Goldcrests is invariable and only rarely included in songs of R. goodfellowi. Discriminant analysis of spectral and temporal characteristics separated the songs of the Southeast Asian populations from those of two other large clusters, the Canarian and Northwest Palearctic. Songs of R. goodfellowi were 100% correctly assigned and well distinguishable from Sino–Himalayan songs. Cluster analysis of Regulus songs strongly corroborated the sister group relationship of R. goodfellowi and R. regulus as reconstructed from concatenated mitochondrial sequence data. All results from molecular and acoustic analysis justify the species rank of the Taiwan endemic species and suggest that it is only distantly related to the firecrest clade (R. ignicapillus, R. madeirensis).

Keywords

Taiwan Endemic Regulus Molecular phylogeny Bioacoustics 

References

  1. Alström P, Olsson U (1995) A new species of Phylloscopus warbler from Sichuan Province, China. Ibis 137:329–334. doi:10.1111/j.1474-919X.1995.tb03254.x CrossRefGoogle Scholar
  2. Alström P, Olsson U (1999) The golden-spectacled warbler: a complex of sibling species, including a previously undescribed species. Ibis 141:545–568. doi:10.1111/j.1474-919X.1999.tb07363.x CrossRefGoogle Scholar
  3. Alström P, Olsson U, Rasmussen PC, Yao CT, Ericson PGP, Sundberg P (2007) Morphological, vocal and genetic divergence in the Cettia acanthizoides complex (Aves: Cettiidae). Zool J Linn Soc 149:437–452Google Scholar
  4. Ancochea E, Fuster JM, Ibarrola E, Cendero A, Coello J, Hernan F et al (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K–Ar data. J Volcanol Geotherm Res 44:231–249. doi:10.1016/0377-0273(90)90019-C CrossRefGoogle Scholar
  5. Athreya R (2006) A new species of Liocichla (Aves: Timaliidae) from Eaglenest Wildlife Sanctuary, Arunachal Pradesh, India. Indian Birds 2:82–94Google Scholar
  6. Baker MC (1996) Depauperate meme pool of vocal signals in an island population of singing honeyeaters. Anim Behav 51:853–858. doi:10.1006/anbe.1996.0089 CrossRefGoogle Scholar
  7. Baker MC (2003) Rapid evolution of a novel song and an increase in repertoire size in an island population of an Australian songbird. Ibis 145:465–471. doi:10.1046/j.1474-919X.2003.00190.x CrossRefGoogle Scholar
  8. Becker PH (1974) Der Gesang von Winter- und Sommergoldhähnchen (Regulus regulus, Regulus ignicapillus) am westlichen Bodensee. Vogelwarte 27:233–243Google Scholar
  9. Becker PH (1976) Artkennzeichnende Gesangsmerkmale bei Winter- und Sommergoldhähnchen (Regulus regulus, R. ignicapillus). Z Tierpsychol 42:411–437Google Scholar
  10. Becker PH (1977) Geographische Variation des Gesanges von Winter- und Sommergoldhähnchen (Regulus regulus, R. ignicapillus). Vogelwarte 29:1–37Google Scholar
  11. Becker PH (1978) Vergleich von Lautäußerungen der Gattung Regulus (Goldhähnchen) als Beitrag zur Systematik. Bonn Zool Beitr 29:101–121Google Scholar
  12. Bergmann HH, Schottler B (2001) Tenerife robin Erithacus (rubecula) superbus - a species of its own? Dutch Bird 23:140–146Google Scholar
  13. Collar NJ (2004) Endemic subspecies of Taiwan birds––first impressions. Bird Asia 2:34–54Google Scholar
  14. del Hoyo J, Elliot A, Christie D (eds) (2006) Handbook of the Birds of the World 11: 346–368Google Scholar
  15. Desfayes M (1965) Biosystematic note on the genus Regulus. Ardea 53:82Google Scholar
  16. Dickinson EC (ed) (2003) The Howard & Moore complete check list of the birds of the world, 3rd edn. Christopher Helm, LondonGoogle Scholar
  17. Ding TS, Lee PF, Lin YS (1997) Abundance and distribution of birds in four high elevation plant communities in Yushan National Park, Taiwan. Acta Zool Taiwanica 8:55–64Google Scholar
  18. Ding TS, Yuan HW, Geng S, Lin YS, Lee PF (2005) Energy flux, body size and density in relation to bird species richness along an elevational gradient in Taiwan. Glob Ecol Biogeogr 14:299. doi:10.1111/j.1466-822X.2005.00159.x CrossRefGoogle Scholar
  19. Drovetski SV, Zink RM, Rohwer S, Fadeev IV, Nesterov EV, Karagodin I (2004) Complex biogeographic history of a holarctic passerine. Proc R Soc Lond B Biol Sci 271:545–551. doi:10.1098/rspb.2003.2638 CrossRefGoogle Scholar
  20. Eck S (1996) Die palaearktischen Vögel–Geospezies und Biospezies. Zool Abh Dresden 49(Suppl):103. SGoogle Scholar
  21. Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evol Int J Org Evol 54:1839–1854Google Scholar
  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791. doi:10.2307/2408678 Google Scholar
  23. Fleischer RC, McIntosh CE, Tarr C (1998) Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K–Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol 7:533–545. doi:10.1046/j.1365-294x.1998.00364.x PubMedCrossRefGoogle Scholar
  24. Fleischer RC, Kirchman JJ, Dumbacher JP, Bevier L, Dove C, Rotzel NC, Edwards SC, Lammertink M, Miglia KJ, Moore WS (2006) Mid-Pleistocene divergence of Cuban and North American Ivory-billed Woodpeckers. Biol Lett 2(3):466–469PubMedCrossRefGoogle Scholar
  25. Förschler MI, Kalko EKV (2007) Geographical differentiation, acoustic adaption and species boundaries in mainland Citril finches and insular Corsican finches, superspecies Carduelis [citrinella]. J Biogeogr 34:1591–1600. doi:10.1111/j.1365-2699.2007.01722.x citrinella CrossRefGoogle Scholar
  26. García-Moreno J (2004) Is there a universal mtDNA clock for birds? J Avian Biol 35:465–468. doi:10.1111/j.0908-8857.2004.03316.x CrossRefGoogle Scholar
  27. Geldmacher J, van den Bogaart P, Hoernle K, Schmincke HU (2000) The 40Ar/39Ar age dating of the Madeira Archipelago and hotspot track (eastern North Atlantic). Geochem Geophys Geosyst 1:2000. doi:10.1029/1999GC000018 CrossRefGoogle Scholar
  28. Gladenkov AY, Oleinik AE, Marincovich L Jr, Barinov KB (2002) A refined age for the earliest opening of Bering Strait. Palaeogeogr Palaeoclimatol Palaeoecol 183:321–328. doi:10.1016/S0031-0182(02)00249-3 CrossRefGoogle Scholar
  29. Glutz von Blutzheim UN, Bauer KM (1991) Handbuch der Vögel Mitteleuropas, Band 12/II. Passeriformes (3.Teil), Sylviidae. Aula Verlag, WiesbadenGoogle Scholar
  30. Hamao S, Ueda K (2000) Simplified song in an island population of the Bush Warbler Cettia diphone. J Ethol 18:53–57. doi:10.1007/s101640070025 CrossRefGoogle Scholar
  31. Hsu YC, Severinghaus LL, Lin YS, Li SH (2003) Isolation and characterization of microsatellite DNA markers from the Lanyu scops owl (Otus elegans botelensis). Mol Ecol Notes 3:595–597. doi:10.1046/j.1471-8286.2003.00523.x CrossRefGoogle Scholar
  32. Hsu YC, Li SH, Lin YS, Severinghaus LL (2006) Microsatellite loci from Lanyu Scops Owl (Otus elegans botelensis) and their cross-species application in four species of Strigidae. Conserv Genet 7:161–165. doi:10.1007/s10592-005-5477-x CrossRefGoogle Scholar
  33. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/17.8.754 PubMedCrossRefGoogle Scholar
  34. Ingold JL, Weigt LA, Guttman SA (1988) Genetic differentiation between North American kinglets and comparisons with three allied passerines. Auk 105:386–390Google Scholar
  35. Irwin DE, Alström P, Olsson U, Benowitz-Fredericks ZM (2001) Cryptic species in the genus Phylloscopus (Old World leaf warblers). Ibis 143:233–247. doi:10.1111/j.1474-919X.2001.tb04479.x CrossRefGoogle Scholar
  36. Johansson US, Alström P, Olsson U, Ericson PGP, Sundberg P, Price TD (2007) Build-up of the Himalayan avifauna through immigration: A biogeographical analysis of the Phylloscopus and Seicercus Warblers. Evol Int J Org Evol 61:324–333. doi:10.1111/j.1558-5646.2007.00024.x Google Scholar
  37. Johnson CL, Wijbrans JR, Constable CG, Gee J, Staudigel H, Tauxe L (1998) 40Ar/39Ar ages and paleomagnetism of São Miguel Lavas, Azores. Earth Planet Sci Lett 160:637–649. doi:10.1016/S0012-821X(98)00117-4 CrossRefGoogle Scholar
  38. Kim KH, Chiu JM, Kao H, Liu Q, Yeh YH (2004) A preliminary study of crustal structure in Taiwan region using receiver function analysis. Geophys J Int XX:1–19Google Scholar
  39. Kroodsma DE (1980) Winter Wren singing behaviour. A pinnacle of song complexity. Condor 82:357–365. doi:10.2307/1367556 CrossRefGoogle Scholar
  40. Kroodsma DE, Liu WC, Goodwin E, Bedell PA (1999) Ecology of song improvisation as illustrated by North American Sedge Wrens. Auk 116:373–386Google Scholar
  41. Kroodsma DA, Woods RW, Goodwin EA (2002) Falkland Island Sedge Wrens (Cistothorus platensis) imitate rather than improvise large song repertoires. Auk 119:523–528. doi:10.1642/0004-8038(2002)119[0523:FISWCP]2.0.CO;2 CrossRefGoogle Scholar
  42. Kvist L, Broggi J, Illera JC, Koivula K (2005) Colonisation and diversification of the blue tits (Parus caeruleus teneriffae-group) in the Canary Islands. Mol Phyl Evol 34:501–511. doi:10.1016/j.ympev.2004.11.017 CrossRefGoogle Scholar
  43. Lei FM, Taichun L (2004) China endemic Birds. Science Press, Beijing, pp 546–548 (in Chinese)Google Scholar
  44. Lei FM, Qu YH, Lu JL, Liu Y, Yin ZH (2003) Conservation of diversity and distribution patterns of endemic birds in China. Biodivers Conserv 12:239–254. doi:10.1023/A:1021928801558 CrossRefGoogle Scholar
  45. Li GY (1995) A new subspecies of Certhia familiaris (Passeriformes: Certhiidae). Acta Zool Sin 20:373–377 (in Chinese with English summary)Google Scholar
  46. Li SH, Li JW, Han LX, Yao CT, Shi HT, Lei FM (2006) Species delimitation in the Hwamei Garrulax canorus. Ibis 148:698–706. doi:10.1111/j.1474-919X.2006.00571.x CrossRefGoogle Scholar
  47. Liu TK, Chen YG, Chen WS, Jiang SH (2000) Rates of cooling and denudation of the Early Penglai Orogeny, Taiwan, as assessed by fission-track constraints. Tectonophysics 320:69–82. doi:10.1016/S0040-1951(00)00028-7 CrossRefGoogle Scholar
  48. Löhrl H, Thaler E (1980) Das Teneriffa-Goldhähnchen Regulus regulus teneriffae–Zur Biologie, Ethologie und Systematik. Bonn Zool Beitr 31:78–96Google Scholar
  49. Löhrl H, Thaler E, Christie AD (1996) Status and behaviour of the Tenerife Goldcrest. Br Birds 89:379–386Google Scholar
  50. Lovette IJ (2004) Mitochondrial dating and mixed support for the “2%” rule in birds. Auk 121:1–6. doi:10.1642/0004-8038(2004)121[0001:MDAMSF]2.0.CO;2 CrossRefGoogle Scholar
  51. Lynch A (1996) The population memetics of birdsong. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, pp 181-197Google Scholar
  52. Marincovich L Jr, Barinov KB, Oleinik AE (2002) Astartae (Bivalvia: Astartidae) that document the earliest opening of the Bering Strait. J Paleontol 76:239–245. doi: 10.1666/0022-3360(2002)076≤0239:TABATD≥2.0.CO;2 CrossRefGoogle Scholar
  53. Martens J (1996) Vocalizations and speciation of Palearctic birds. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Cornell Univ Press, Ithaca, pp 221–240Google Scholar
  54. Martens J, Eck S (1991) Pnoepyga immaculata n. sp., eine neue bodenbewohnende Timalie aus dem Nepal-Himalaya. J Ornithol 132:179–198. doi:10.1007/BF01647276 CrossRefGoogle Scholar
  55. Martens J, Päckert M, Nazarenko AA, Valchuk O, Kawaji N (1998) Comparative bioacoustics of territorial song in the Goldcrest (Regulus regulus) and its implications for the intrageneric phylogeny of the genus Regulus. Zool Abh Dresden 50:99–128Google Scholar
  56. Martens J, Eck S, Päckert M, Sun YH (1999) The golden-spectacled warbler Seicercus burkii––a species swarm. Zool Abh Dresden 50:282–327Google Scholar
  57. Martens J, Tietze DT, Sun YH (2006) Molecular phylogeny of Parus (Periparus), a Eurasian radiation of tits (Aves: Passeriformes: Paridae). Zool Abh Dresden 55:103–120Google Scholar
  58. Martínez-Cruz B, Godoy JA (2007) Genetic evidence for a recent divergence and subsequent gene flow between Spanish and Eastern imperial eagles. Evol Biol 7. doi:10.1186/1471-2148-7-170
  59. Mayr E, Short LL (1970) Species taxa of North American birds. A contribution to comparative systematics. Publ Nuttal Ornithol Club 9:1–27Google Scholar
  60. Naugler CT, Smith PC (1991) Song similarity in an isolated population of Fox Sparrows (Passerella iliaca). Condor 93:1001–1003. doi:10.2307/3247734 CrossRefGoogle Scholar
  61. Olsson U, Alström P, Colston PR (1993) A new species of Phylloscopus warbler from Hainan Island, China. Ibis 135:3–7. doi:10.1111/j.1474-919X.1993.tb02803.x CrossRefGoogle Scholar
  62. Olsson U, Alström P, Sundberg P (2004) Non-monophyly of the avian genus Seicercus (Aves: Sylviidae) revealed by mitochondrial DNA. Zool Scr 33:501–510. doi:10.1111/j.0300-3256.2004.00166.x CrossRefGoogle Scholar
  63. Olsson U, Alström P, Ercison PGP, Sundberg P (2005) Non-monophyletic taxa and cryptic species––evidence from a molecular phylogeny of leaf-warblers (Phylloscopus: Aves). Mol Phyl Evol 36:261–275. doi:10.1016/j.ympev.2005.01.012 CrossRefGoogle Scholar
  64. Päckert M (2006) Song dialects as diagnostic characters––acoustic differentiation of the Canary Island Goldcrest subspecies Regulus regulus teneriffae Seebohm 1883 and R. r. ellenthalerae Päckert et al. 2006. Zootaxa 123:99–115Google Scholar
  65. Päckert M, Martens J (2004) Song dialects on the Atlantic islands: goldcrests of the Azores (Regulus regulus azoricus, R. r. sanctaemariae, R. r. inermis). J Ornithol 145:23–30. doi:10.1007/s10336-003-0003-8 CrossRefGoogle Scholar
  66. Päckert M, Martens J, Hofmeister T (2001) Lautäußerungen der Sommergoldhähnchen von den Inseln Madeira und Mallorca (Regulus ignicapillus madeirensis, R. i. balearicus). J Ornithol 142:16–29Google Scholar
  67. Päckert M, Martens J, Nazarenko AA, Kosuch J, Veith M (2003) Phylogenetic signal in song of crests and kinglets (Aves: Regulus). Evol Int J Org Evol 57:616–629Google Scholar
  68. Päckert M, Martens J, Sun YH, Veith M (2004) The radiation of the Seicercus burkii complex and its congeners––molecular genetics and bioacoustics. Org Divers Evol 4:341–364. doi:10.1016/j.ode.2004.06.002 CrossRefGoogle Scholar
  69. Päckert M, Martens J, Dietzen C, Wink M, Kvist L (2006) Radiation of goldcrests (Regulus regulus) on the Atlantic Islands: evidence of a new taxon from the Canary Islands. J Avian Biol 37:364–380. doi:10.1111/j.2006.0908-8857.03533.x CrossRefGoogle Scholar
  70. Päckert M, Martens J, Tietze DT, Dietzen C, Wink M, Kvist L (2007) Calibration of a molecular clock in tits (Paridae) - do nucleotide substitution rates of mitochondrial genes deviate from the 2% rule? Mol Phyl Evol 44:1–14. doi:10.1016/j.ympev.2007.03.006 CrossRefGoogle Scholar
  71. Palumbi S, Martin A, Romano S, McIllan WO, Stice L, Grabowski G (1991) The simple fools guide to PCR. Kewalko Marine Laboratory, University of Hawaii, HonoluluGoogle Scholar
  72. Pasquet E, Thibault JC (1997) Genetical differences among mainland and insular forms of in the Citril Finch, Serinus citrinella. Ibis 139:679–684. doi:10.1111/j.1474-919X.1997.tb04691.x CrossRefGoogle Scholar
  73. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817 PubMedCrossRefGoogle Scholar
  74. Rasmussen PC, Round PD, Dickinson EC, Rozendaal FG (2000) A new bush-warbler (Sylviidae, Bradypterus) from Taiwan. Auk 117:279–289. doi:10.1642/0004-8038(2000)117[0279:ANBWSB]2.0.CO;2 CrossRefGoogle Scholar
  75. Roselaar CS, Sluys R, Aliabadian M, Mekenkamp PGM (2007) Geographic patterns in the distribution of Palearctic songbirds. J Ornithol 148:271–280. doi:10.1007/s10336-007-0129-1 CrossRefGoogle Scholar
  76. Ryan PD, Harper DAT, Whalley JS (1995) PALSTAT, Statistics for palaeontologists. Chapman & Hall, LondonGoogle Scholar
  77. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  78. Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1231Google Scholar
  79. Sanderson MJ (2004) r8s, version 1.70. User’s manual (December 2004). Available from http://ginger.ucdavis.edu/r8s/r8s1.7.manual.pdf
  80. Sangster G (2000) Genetic distance as a test of species boundaries in the Citril Finch Serinus citrinella: a critique and taxonomic reinterpretation. Ibis 142:487–490. doi:10.1111/j.1474-919X.2000.tb04447.x CrossRefGoogle Scholar
  81. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2000) TREE-PUZZLE, version 5.0. MünchenGoogle Scholar
  82. Seebohm H (1883) History of British birds, vol 1. R.H Porter, LondonGoogle Scholar
  83. Shiu HJ, Lee PF (2003) Assessing avian point-count duration and sample size using species accumulation functions. Zool Stud 42:357–367Google Scholar
  84. Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale Univ Press, New HavenGoogle Scholar
  85. Slabbekoorn H, Jeese A, Bell DA (2003) Microgeographic song variation in island populations of the white-crowned sparrow (Zonotrichia leucophrys nutalli): innovation through recombination. Behaviour 140:947–963. doi:10.1163/156853903770238409 CrossRefGoogle Scholar
  86. Smith TB, Clegg SM, Kimura M, Ruegg K, Milá B, Lovette I (2005) Molecular genetic approaches to linking breeding and overwintering areas in five Neotropical migrant passerines. In: Greenberg R, Marra PP (eds) Birds of two worlds: the ecology and evolution of migration. The Johns Hopkins University Press, Baltimore, pp 222–234Google Scholar
  87. Spicer GS, Dunipace L (2004) Molecular phylogeny of songbirds (Passeriformes) inferred from mitochondrial 16S ribosomal RNA gene sequences. Mol Phyl Evol 30:325–335. doi:10.1016/S1055-7903(03)00193-3 CrossRefGoogle Scholar
  88. Schottler B (1995) Songs of Blue Tits Parus caeruleus palmensis from La Palma (Canary Islands)––a test of hypothesis. Bioacoustics 6:135–152Google Scholar
  89. Stock M, Bergmann HH (1988) Der Gesang des Rotkehlchens (Erithacus rubecula superbus) von Teneriffa (Kanarische Inseln)—Struktur und Erkennen eines Inseldialekts. Zool Jahrb. Abt Allg Zool Physiol Tiere 92:197–212Google Scholar
  90. Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969Google Scholar
  91. Sturmbauer C, Berger B, Dallinger R, Föger M (1997) Mitochondrial phylogeny of the genus Regulus and implications on the evolution of breeding behaviour in sylvioid songbirds. Mol Phyl Evol 10:144–149. doi:10.1006/mpev.1997.0486 CrossRefGoogle Scholar
  92. Thaler E (1990) Die Goldhähnchen. Die Neue Brehm-Bücherei, Wittenberg LutherstadtGoogle Scholar
  93. Thielcke G (1970) Lernen von Gesang als möglicher Schrittmacher von Evolution. Zeitschr Zool Syst Evolut Forsch 8:309–320Google Scholar
  94. Thielcke G (1973) On the origin of divergence of learned signals (songs) in isolated populations. Ibis 115:511–516. doi:10.1111/j.1474-919X.1973.tb01989.x CrossRefGoogle Scholar
  95. Toews DPL, Irwin DE (2008) Cryptic speciation in a holarctic passerine revealed by genetic and bioacoustic analyses. Mol Ecol 17:2691–2705. doi:10.1111/j.1365-294X.2008.03769.x PubMedCrossRefGoogle Scholar
  96. Tu HW, Severinghaus LL (2004) Geographic variation of the highly complex Hwamei (Garrulax canorus) songs. Zool Stud 43:629–640 SCIGoogle Scholar
  97. Vaurie C (1959) The birds of the Palearctic fauna. Passeriformes, WitherbyGoogle Scholar
  98. Vinceck V, O’Huigin C, Satta Y, Takahata N, Boag P, Grant PR et al (1997) How large was the founding population of Darwin’s finches? Proc R Soc Lond 264:111–118. doi:10.1098/rspb.1997.0017 CrossRefGoogle Scholar
  99. Volsøe H (1951) The breeding birds of the Canary Islands. I. Introduction and synopsis of the species. Videnskab Meddelelser 113:1–153Google Scholar
  100. Voous KH (1962) Die Vogelwelt Europas und ihre Verbreitung. Hamburg and Berlin, pp 228–229.Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2008

Authors and Affiliations

  • Martin Päckert
    • 1
  • Jochen Martens
    • 2
  • Lucia Liu Severinghaus
    • 3
  1. 1.Staatliche Naturhistorische SammlungenMuseum für TierkundeDresdenGermany
  2. 2.Institut für ZoologieMainzGermany
  3. 3.Research Center for BiodiversityAcademia SinicaTaipeiTaiwan

Personalised recommendations