Journal of Ornithology

, Volume 148, Supplement 2, pp 469–477 | Cite as

Passerine MHC: genetic variation and disease resistance in the wild

  • Helena WesterdahlEmail author


The passerine major histocompatibility complex (MHC) class I and IIB genes are different from those of the avian model species the chicken because passerines have (1) a larger number of MHC genes, (2) MHC genes with longer introns, and (3) MHC genes that are pseudogenes. Most passerine MHC genes are transcribed (coding), extremely variable and subject to balancing selection. The high genetic diversity of the MHC genes of passerines is most likely maintained by selection from a large number of different pathogens. Association between MHC alleles and resistance to avian malaria infections have been reported in House Sparrows and Great Reed Warblers. Passerines are infected by a large number of different avian malaria infections. Therefore passerines and avian malaria is a study system that is well-suited to investigations of balancing selection and associations between MHC genes and disease resistance.


Passerines MHC class I and class II Balancing selection Avian malaria Disease resistance 



The present study was financed by grants from the Swedish Research Council, The Royal Swedish Academy of Sciences and Lunds Djurskyddsfond to Helena Westerdahl. I would like to thank Matt Hale, Staffan Bensch and Lars Råberg for reading and improving earlier versions of this manuscript. I also want to thank Terry Burke (my PostDoc Host) and Jarrod Hadfield for helping me to improve the IOC talk on which this manuscript is based.


  1. Abbas AK, Lichtman AH, Pober JS (1994) Cellular and molecular immunology. WB Saunders, Philadelphia, PAGoogle Scholar
  2. Aguilar A, Edwards SV, Smith TB, Wayne RK (2006) Patterns of variation in MHC class II ß loci of the little greenbul (Andropadus virens) with comments on MHC evolution in birds. J Hered 97:133–142Google Scholar
  3. Atkinson CT, van Riper C (1991) Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon and Haemoproteus. In: Loye JE, Zuk M (eds) Bird−parasite interactions. Oxford University Press, New YorkGoogle Scholar
  4. Atkinson CT, Dusek RJ, Lease JK (2001) Serological responses and immunity to superinfection with avian malaria in experimentally-infected Hawaii amakihi. J Wildl Dis 37:20–27PubMedGoogle Scholar
  5. Bensch S, Åkesson S (2003) Temporal and spatial variation of hematozoans in Scandinavian willow warblers. J Parasitol 89:388–391PubMedCrossRefGoogle Scholar
  6. Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589CrossRefGoogle Scholar
  7. Bensch S, Waldenström J, Jonzén N, Westerdahl H, Hansson B, Sejberg D, Haselquist D (2007) Temporal dynamics and diversity of avian malaria parasites in a single host species. J Anim Ecol 76:112–122PubMedCrossRefGoogle Scholar
  8. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377PubMedCrossRefGoogle Scholar
  9. Bodmer WF (1972) Evolutionary significance of the HLA system. Nature 237:139–145PubMedCrossRefGoogle Scholar
  10. Bollmer JL, Vargas FH, Parker RG (2007) Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus). Immunogenetics 59:593–602Google Scholar
  11. Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004) Diversity of MHC class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865PubMedCrossRefGoogle Scholar
  12. Bonneaud C, Richard M, Faivre B, Westerdahl H, Sorci G (2006a) Complex MHC-based mate choice in a wild passerine. Proc R Soc Lond B 273:1111–1116 CrossRefGoogle Scholar
  13. Bonneaud C, Perez-Tris J, Federici P, Chastel O, Sorci G. (2006b) MHC alleles confer local resistance to malaria in a wild passerine. Evolution 60:383–389PubMedGoogle Scholar
  14. Borghans JAM, Beltman JB, De Boer RJ (2004) MHC polymorphism under host–pathogen coevolution. Immunogenetics 55:732–739Google Scholar
  15. Doherty PC, Zinkernagel RM (1975a) A biological role for the major histocompatibility antigens. Lancet 1:1406PubMedCrossRefGoogle Scholar
  16. Doherty PC, Zinkernagel RM (1975b) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52PubMedCrossRefGoogle Scholar
  17. Edwards SV, Grahn M, Potts WK (1995) Dynamics of MHC evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Mol Ecol 4:719–729PubMedCrossRefGoogle Scholar
  18. Edwards SV, Gasper J, March M (1998) Genomics and polymorphism of Agph-DAB1, an MHC class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 15:236–50PubMedGoogle Scholar
  19. Edwards SV, Gasper J, Garrigan D, Martindale D, Koop BF (2000) A 39-kb sequence around a blackbird MHC class II gene: ghost of selection past and songbird genome architecture. Mol Biol Evol 17:1384–95PubMedGoogle Scholar
  20. Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311CrossRefGoogle Scholar
  21. Ekblom R, Grahn M, Höglund J (2003) Patterns of polymorphism in the MHC class II of a non-passerine bird, the great snipe (Gallinago media). Immunogenetics 54:734–741Google Scholar
  22. Eklund AC, Belchak MM, Lapidos K, Raha-Chowdhury R, Ober C (2000) Polymorphisms in the HLA-linked olfactory receptor genes in the Hutterites. Hum Immunol 61:711–717PubMedCrossRefGoogle Scholar
  23. Freeman-Gallant CR, Johnson EM, Saponara F, Stanger M (2002) Variation at the MHC in Savannah sparrows. Mol Ecol 11:1125–1130PubMedCrossRefGoogle Scholar
  24. Freeman-Gallant CR, Meguerdichian M, Wheelwright NT, Sollecito SV (2003) Social pairing and female mating fidelity predicted by RFLP similarity at the major histocompatibility complex in a songbird. Mol Ecol 12:3077–3083PubMedCrossRefGoogle Scholar
  25. Gasper JS, Shiina T, Inoko H, Edwards SV (2001) Songbird genomics: analysis of 45 kb upstream of a polymorphic MHC class II gene in red-winged blackbirds (Agelaius phoeniceus). Genomics 75:26–34PubMedCrossRefGoogle Scholar
  26. Hansson B, Bensch S, Hasselquist D, Akesson M (2001) Microsatellite diversity predicts recruitment of sibling great reed warblers. Proc R Soc Lond B 268:1287–1291CrossRefGoogle Scholar
  27. Hayworth AM, van Riper C III, Weathers WW (1987) Effects of plasmodium relictum on the metabolic rate and body temperature in canaries (Serinus canarius). J Parasitol 73:850–853PubMedCrossRefGoogle Scholar
  28. Hedrick PW (2002) Pathogen resistance and genetic variation at MHC loci. Evolution 56:1902–1908PubMedGoogle Scholar
  29. Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423–431CrossRefGoogle Scholar
  30. Hess CM, Gasper J, Hoekstra HE, Hill CE, Edwards SV (2000) MHC class II pseudogene and genomic signature of a 32-kb cosmid in the house finch (Carpodacus mexicanus). Genome Res 10:613–23PubMedCrossRefGoogle Scholar
  31. Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600PubMedCrossRefGoogle Scholar
  32. Hill AVS, Jepson A, Plebanski M, Gilbert SC (1997) Genetic analysis of host–parasite coevolution in human malaria. Philos Trans R Soc Lond B 352:1317–1325Google Scholar
  33. Hughes AL, Hughes MK (1995) Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics 42:233–43PubMedCrossRefGoogle Scholar
  34. Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–35PubMedCrossRefGoogle Scholar
  35. Högstrand K, Böhme J (1999) Gene conversion can create new MHC alleles. Immunol Rev 167:305–317PubMedCrossRefGoogle Scholar
  36. Jarvi SI, Schultz JJ, Atkinson CT (2002) PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88:153–8PubMedGoogle Scholar
  37. Jarvi SI, Tarr CL, McIntosh CE, Atkinson CT, Fleischer RC (2004) Natural selection of the major histocompatibility complex (MHC) in Hawaiian honeycreepers (Drepanidinae). Mol Ecol 13:2157–2168 PubMedCrossRefGoogle Scholar
  38. Kaufman J (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 50:228–236PubMedCrossRefGoogle Scholar
  39. Kaufman J, Jacob J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J (1999) Gene organisation determines evolution of function in the chicken MHC. Immunol Rev 167:101–117PubMedCrossRefGoogle Scholar
  40. Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New YorkGoogle Scholar
  41. Kurtz J, Kalbe M, Aeschlimann PB, Haberli MA, Wegner KM, Reusch TB, Milinski M (2004) Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc R Soc Lond B 271:197–204CrossRefGoogle Scholar
  42. Li W-H (1997) Molecular evolution. Sinauer, Sunderland, MAGoogle Scholar
  43. Madsen T, Ujvari B (2006) MHC class I variation associates with parasite resistance and longevity in tropical pythons. J Evol Biol 19:1973–1978PubMedCrossRefGoogle Scholar
  44. Marzal A, de Lope F, Navarro C, Pape Møller A (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142:541–45PubMedCrossRefGoogle Scholar
  45. Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243PubMedCrossRefGoogle Scholar
  46. Miller HC, Lambert DM (2004a) Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics 56:178–91PubMedGoogle Scholar
  47. Miller HC, Lambert DM (2004b) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721CrossRefGoogle Scholar
  48. Miller MM, Bacon LD, Hala K, Hunt HD, Ewald SJ, Kaufman J, Zoorob R, Briles WE (2004) Nomenclature for the chicken major histocompatibility (B and Y) complex. Immunogenetics 56:261–279PubMedGoogle Scholar
  49. Nordling D, Andersson M, Zohari S, Gustafsson L (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B 265:1291–1298CrossRefGoogle Scholar
  50. Oppliger A, Christe P, Richner H (1996) Clutch size and malaria resistance. Nature 381:565PubMedCrossRefGoogle Scholar
  51. Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Immunogenetics 272:67–74Google Scholar
  52. Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164CrossRefGoogle Scholar
  53. Piertney SB, Oliver MK (2006) The evolutionary ecology of the majotr histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  54. Potts WK, Wakeland EK (1990) Evolution of diversity at the major histocompatibility complex. Trends Ecol Evol 5:181–187CrossRefGoogle Scholar
  55. Raberg L, de Roode JC, Bell AS, Stamou P, Gray D, Read AF (2006) The role of immune-mediated apparent competition in genetically diverse malaria infections. Am Nat 168:41–53PubMedCrossRefGoogle Scholar
  56. Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529PubMedCrossRefGoogle Scholar
  57. Richner H, Christe P, Oppliger A (1995) Paternal investment affects prevalence of malaria. Proc Natl Acad Sci USA 92:1192–1194PubMedCrossRefGoogle Scholar
  58. Richardson DS, Komdeur J, Burke T, von Schantz T (2005) MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc R Soc Lond B 272:759–767 CrossRefGoogle Scholar
  59. Ricklefs RE, Fallon SM (2002) Diversification and host switching in avian malaria parasites. Proc R Soc Lond B 269:885–892CrossRefGoogle Scholar
  60. de Roode JC, Helinski ME, Anwar MA, Read AF (2005) Dynamics of multiple infection and within-host competition in genetically diverse malaria infections. Am Nat 166:531–542PubMedCrossRefGoogle Scholar
  61. Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439–450PubMedGoogle Scholar
  62. Sol D, Jovani R, Torres J (2003) Parasite mediated mortality and host immune response explain age-related differences in blood parasitism in birds. Oecologia 135:542–547PubMedGoogle Scholar
  63. Strand T, Westerdahl H, Höglund J, Alatalo R, Siitari H (2007) The Mhc class II of the black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734Google Scholar
  64. Tomas G, Merino S, Moreno J, Morales J, Martinez-De la Puente J (2007) Impact of blood parasites on immunoglobulin level and parental effort: a medication field experiment on a wild passerine. Funct Ecol 21:125–1323CrossRefGoogle Scholar
  65. Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027PubMedCrossRefGoogle Scholar
  66. Vincek V, Klein D, Graser RT, Figueroa F, O'Huigin C, Klein J (1995) Molecular cloning of major histocompatibility complex class II B gene cDNA from the Bengalese finch Lonchura striata. Immunogenetics 42:262–267Google Scholar
  67. Vincek V, O’Huigin C, Satta Y, Takahata N, Boag PT, Grant PR, Grant BR, Klein J (1997) How large was the founding population of Darwin’s finches? Proc R Soc Lond B 264:111–118Google Scholar
  68. Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11:1545–1554PubMedCrossRefGoogle Scholar
  69. Waldenström J, Bensch S, Hasselquist D, Östman Ö (2004) A new nested PCR method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194PubMedCrossRefGoogle Scholar
  70. Wedekind C, Seebeck T, Bettens F, Paepke AJ (1995) MHC-dependent mate preferences in humans. Proc R Soc Lond B 260:245–249CrossRefGoogle Scholar
  71. Wedekind C, Walker M, Little TJ (2005) The course of malaria in mice: major histocompatibility complex (MHC) effects, but no general MHC heterozygote advantage in single-strain infections. Genetics 170:1427–1430PubMedCrossRefGoogle Scholar
  72. Westerdahl H (2004) No evidence of an MHC based mate choice in the great reed warbler. Mol Ecol 13:2465–2470PubMedCrossRefGoogle Scholar
  73. Westerdahl H, Wittzell H, von Schantz T (1999) Polymorphism and transcription of MHC class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170PubMedCrossRefGoogle Scholar
  74. Westerdahl H, Wittzell H, von Schantz T (2000) MHC diversity in two passerine birds: no evidence for a minimal essential MHC. Immunogenetics 52:92–100PubMedCrossRefGoogle Scholar
  75. Westerdahl H, Hanssson B, Bensch S, Hasselquist D (2004a) Between-year variation of MHC allele frequencies in great reed warblers: selection or drift? J Evol Biol 17:485–492PubMedCrossRefGoogle Scholar
  76. Westerdahl H, Wittzell H, von Schantz T, Bensch S (2004b) MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92:534–542PubMedCrossRefGoogle Scholar
  77. Westerdahl H, Waldenström J, Hansson B, Hasselquist D, Bensch S (2005) An association between malaria infection and MHC in great reed warblers. Proc R Soc Lond B 272:1511–1518CrossRefGoogle Scholar
  78. Wittzell H, Bernot A, Auffray C, Zoorob R (1999) Concerted evolution of two MHC class II B loci in pheasants and domestic chickens. Mol Biol Evol 16:479–490PubMedGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2007

Authors and Affiliations

  1. 1.Department of Animal Ecology, Ecology BuildingLund UniversityLundSweden 

Personalised recommendations