Journal of Ornithology

, Volume 148, Supplement 2, pp 455–458 | Cite as

The renaissance of avian paleontology and its bearing on the higher-level phylogeny of birds

  • Gerald Mayr


Recent phylogenetic analyses provide strong evidence for some previously undetected clades of morphologically very divergent avian groups. Also, within the past decades, palaeornithology has experienced a renaissance and the Paleogene fossil record of birds is approaching that of mammals in the number of recorded higher-level taxa. However, there is still little mutual exchange between students of these different data, as molecular systematists are often unfamiliar with the fossil record of birds, whereas palaeornithologists only recently started to interpret their fossils in the light of modern phylogenetic analyses. Here, this deficiency is remedied in a brief overview of some fossil “missing links” between extant higher avian groups, which combine derived characters of a certain taxon and plesiomorphic characters of its sister group.


Fossil birds Missing links Palaeornithology Phylogeny 



I thank two anonymous referees for comments which improved the manuscript.


  1. Asher RJ, Novacek MJ, Geisler JH (2003) Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J Mammal Evol 10:131–194CrossRefGoogle Scholar
  2. Barrowclough GF, Groth JG, Mert LA (2006) The RAG-1 exon in the avian order Caprimulgiformes: phylogeny, heterozygosity, and base composition. Mol Phylogenet Evol 41:238–248PubMedCrossRefGoogle Scholar
  3. Boisserie JR, Lihoreau F, Brunet M (2005) The position of the Hippopotamidae within Cetartiodactyla. Proc Natl Acad Sci USA 102:1537–1541CrossRefGoogle Scholar
  4. Cheneval J, Escuillié F (1992) New data concerning Palaelodus ambiguus (Aves: Phoenicopteriformes: Palaelodidae): ecological and evolutionary interpretations. In: Campbell KE (ed) Papers in Avian Paleontology honoring Pierce Brodkorb. Nat Hist Mus Los Angeles, Sci Ser, 36:208–224Google Scholar
  5. Chubb A (2004) New nuclear evidence for the oldest divergence among neognath birds: the phylogenetic utility of ZENK (i). Mol Phylogenet Evol 30:140–151PubMedCrossRefGoogle Scholar
  6. Cracraft J, Barker FK, Braun M, Harshman J, Dyke GJ, Feinstein J, Stanley S, Cibois A, Schikler P, Beresford P, García-Moreno J, Sorenson MD, Yuri T, Mindell DP (2004) Phylogenetic relationships among modern birds (Neornithes): toward an avian tree of life. In: Cracraft J, Donoghue M (eds) Assembling the tree of life. Oxford University Press, New York, pp 468–489Google Scholar
  7. Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547PubMedCrossRefGoogle Scholar
  8. Fain MG, Houde P (2004) Parallel radiations in the primary clades of birds. Evolution 58:2558–2573PubMedGoogle Scholar
  9. Fain MG, Houde P (2007) Multilocus perspectives on the monophyly and phylogeny of the order Charadriiformes (Aves). BMC Evol Biol 7:35PubMedCrossRefGoogle Scholar
  10. Livezey BC, Zusi RL (2007) Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy: II. Analysis and discussion. Zool J Linn Soc 149:1–94CrossRefGoogle Scholar
  11. Manegold A (2006) Two additional synapomorphies of grebes Podicipedidae and flamingos Phoenicopteridae. Acta Ornithol 41:79–82Google Scholar
  12. Mayr G (1999) Pumiliornis tessellatus n. gen. n. sp., a new enigmatic bird from the Middle Eocene of Grube Messel (Hessen, Germany). Cour Forsch-Inst Senckenberg 216:75–83Google Scholar
  13. Mayr G (2000) Charadriiform birds from the early Oligocene of Céreste (France) and the Middle Eocene of Messel (Hessen, Germany). Geobios 33:625–636CrossRefGoogle Scholar
  14. Mayr G (2001) A new specimen of the tiny Middle Eocene bird Gracilitarsus mirabilis (new family: Gracilitarsidae). Condor 103:78–84CrossRefGoogle Scholar
  15. Mayr G (2002a) Osteological evidence for paraphyly of the avian order Caprimulgiformes (nightjars and allies). J Ornithol 143:82–97CrossRefGoogle Scholar
  16. Mayr G (2002b). On the osteology and phylogenetic affinities of the Pseudasturidae: lower Eocene stem-group representatives of parrots (Aves, Psittaciformes). Zool J Linn Soc 136:715–729CrossRefGoogle Scholar
  17. Mayr G, Manegold A, Johansson U (2003) Monophyletic groups within “higher land birds”: comparison of morphological and molecular data. J Zool Syst Evol Res 41:233–248CrossRefGoogle Scholar
  18. Mayr G (2004) Morphological evidence for sister group relationship between flamingos (Aves: Phoenicopteridae) and grebes (Podicipedidae). Zool J Linn Soc 140:157–169CrossRefGoogle Scholar
  19. Mayr G (2005a) The Paleogene fossil record of birds in Europe. Biol Rev 80:515–542PubMedCrossRefGoogle Scholar
  20. Mayr G (2005b) Fossil Hummingbirds in the Old World. Biologist 52:12–16Google Scholar
  21. Mayr G (2006) New specimens of the Eocene Messelirrisoridae (Aves: Bucerotes), with comments on the preservation of uropygial gland waxes in fossil birds from Messel and the phylogenetic affinities of Bucerotes. Paläontol Z 80:390–405Google Scholar
  22. Mayr G (2007a) The contribution of fossils to the reconstruction of the higher-level phylogeny of birds. Species Phylogeny Evol 1:59–64Google Scholar
  23. Mayr G (2007b) Avian higher-level phylogeny: well-supported clades and what we can learn from an analysis of 2,954 morphological characters. J Zool Syst Evol Res (in press)Google Scholar
  24. Mayr G, Knopf C (2007) A stem lineage representative of buttonquails from the lower Oligocene of Germany: fossil evidence for a charadriiform origin of the Turnicidae. Ibis (in press)Google Scholar
  25. Novacek MJ (1992) Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals. Syst Biol 41:58–73CrossRefGoogle Scholar
  26. Paton TA, Baker AJ (2006) Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the charadriiform birds congruent with the nuclear RAG-1 tree. Mol Phylogenet Evol 39:657–667PubMedCrossRefGoogle Scholar
  27. Paton TA, Baker AJ, Groth JG, Barrowclough GF (2003) RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds. Mol Phylogenet Evol 29:268–278PubMedCrossRefGoogle Scholar
  28. Santini F, Tyler JC (2004) The importance of even highly incomplete fossil taxa in reconstructing the phylogenetic relationships of the Tetraodontiformes (Acanthomorpha: Pisces). Integr Comp Biol 44:349–357CrossRefGoogle Scholar
  29. Storer RW (2006) The grebe–flamingo connection: a rebuttal. Auk 123:1183–1184CrossRefGoogle Scholar
  30. van Tuinen M, Butvill DB, Kirsch JAW, Hedges SB (2001) Convergence and divergence in the evolution of aquatic birds. Proc R Soc Lond B 268:1345–1350CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2007

Authors and Affiliations

  1. 1.Forschungsinstitut Senckenberg, Sektion OrnithologieFrankfurt am MainGermany

Personalised recommendations