Journal of Ornithology

, Volume 148, Supplement 2, pp 479–484 | Cite as

Evolution of the major histocompatibility complex class I genes in Serinus canaria from the Canary Islands is different from that of Asian and African continental Serinus species

  • Antonio Arnaiz-VillenaEmail author
  • Ernesto Lowy
  • Valentín Ruiz-del-Valle
  • Helena Westerdahl
  • Juan Moscoso
  • Juan Ignacio Serrano-Vela
  • Håkan Witzell
  • Jorge Zamora
Original Article


The radiation of canaries (genus Serinus) occurred in Africa and Eurasia during the Miocene Epoch (9 million years ago) according to maximum parsimony (MP), neighbor-joining (NJ), maximum likelihood (ML) and Bayesian methodologies. Serinus canaria (wild canary) and S. serinus (European serin) together form one of the several polytomies within the genus Serinus phylogenetic trees. In a relatively late period, a wild ancestor of S. canaria invaded the Canary Islands, and these birds are the origin of all existing cage canaries, including the first genetically engineered animal: the red canary. The present analysis of the major histocompatibility complex (MHC) molecules in the Canary Islands' species S. canaria shows that the evolution of the MHC in this species is overall different and faster than that of continental species – namely, S. thibetanus (Asia) and S. mozambicus (Africa) – but particularly so in the peptide binding region. These data support the hypothesis that oceanic islands may be evolutionary reservoirs and not evolutionary dead ends.


Canary Islands Evolution Major histocompatibility complex Serinus canaria 



This work was supported in part by grants from the Spanish Ministerio de Educación y Ciencia (PM-1999–023 and BMC-2001–1299) and Fundación Mutua Madrileña Automovilista. We thank Prof. Michael Wink and Javier Gonzalez for their help on handling Bayesian analyses.


  1. Arnaiz-Villena A, Timon M, Corell A, Perez-Aciego P, Martin-Villa JM, Regueiro JR (1992) Brief report: primary immunodeficiency caused by mutations in the gene encoding the CD3-gamma subunit of the T-lymphocyte receptor. N Engl J Med 327:529–533PubMedCrossRefGoogle Scholar
  2. Arnaiz-Villena A, Alvarez-Tejado M, Ruiz-del-Valle V, Garcia-de-la-Torre C, Varela P, Recio MJ, Ferre S, Martinez-Laso J (1998) Phylogeny and rapid northern and southern hemisphere speciation of goldfinches during the Miocene and Pliocene epochs. Cell Mol Life Sci 54:1031–1041PubMedCrossRefGoogle Scholar
  3. Arnaiz-Villena A, Alvarez-Tejado M, Ruiz-del-Valle V, Garcia-de-la-Torre C, Varela P, Recio MJ, Ferre S, Martinez-Laso J (1999) Rapid radiation of canaries (Genus Serinus). Mol Biol Evol 16:2–11Google Scholar
  4. Birkhead T (2004) The Red Canary: the story of the first genetically engineered animal. Orion Public Company, LondonGoogle Scholar
  5. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512PubMedCrossRefGoogle Scholar
  6. Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004) Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865PubMedCrossRefGoogle Scholar
  7. Dietzen C, Voigt C, Wink M, Gahr M, Leitner S (2006) Phylogeography of island canary (Serinus canaria) populations. J Ornithol 147:485–494CrossRefGoogle Scholar
  8. Filardi CE, Moyle RG (2005) Single origin of a pan-Pacific bird group and upstream colonization of Australasia. Nature 438:216–219PubMedCrossRefGoogle Scholar
  9. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  10. Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170PubMedCrossRefGoogle Scholar
  11. Klein J (1986) Natural history of the major histocompatibility complex. Willey, New YorkGoogle Scholar
  12. Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219PubMedGoogle Scholar
  13. Kumar S, Tamura K, Ingrid B, Nei M (2001) MEGA2: Molecular Evolutionary Genetics Analysis software, version 2.0. Arizona State University, TempeGoogle Scholar
  14. Parham P, Lomen CE, Lawlor DA, Ways JP, Holmes N, Coppin HL, Salter RD, Wan AM, Ennis PD (1988a) Nature of polymorphism in HLA-A, -B, and -C molecules. Proc Natl Acad Sci USA 85:4005–4009PubMedCrossRefGoogle Scholar
  15. Parham P, Lomen CE, Lawlor DA, Ways JP, Holmes N, Coppin HL, Salter RD, Wan AM, Ennis PD (1988b) Nature of polymorphism in HLA-A, -B, and -C molecules. Proc Natl Acad Sci USA 85:4005–4009PubMedCrossRefGoogle Scholar
  16. Pasquet E, Thibault JC (1997) Genetic differences among mainland and insular forms of the Citril Finch Serinus citrinella. Ibis 139:679–684CrossRefGoogle Scholar
  17. Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred Great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529PubMedCrossRefGoogle Scholar
  18. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  19. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  20. Sato A, Mayer WE, Tichy H, Grant PR, Grant BR, Klein J (2001) Evolution of Mhc class II B genes in Darwin’s finches and their closest relatives: birth of a new gene. Immunogenetics 53:792–801PubMedCrossRefGoogle Scholar
  21. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385PubMedCrossRefGoogle Scholar
  22. Swofford DL (2002) PAUP*. Phylogenetic analysis Using parsimony (* and other methods) version 4. Sinauer Assoc, SunderlandGoogle Scholar
  23. Westerdahl H, Wittzell H, von Schantz T (1999) Polymorphism and transcription of Mhc class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170PubMedCrossRefGoogle Scholar
  24. Zamora J, Lowy E, Ruiz-del-Valle V, Moscoso J, Serrano-Vela JI, Rivero-de-Aguilar J, Arnaiz-Villena A (2006a) Rhodopechys obsoleta (desert finch): a pale ancestor of greenfinches (Carduelis spp.) according to molecular phylogeny. J Ornithol 147:448–456CrossRefGoogle Scholar
  25. Zamora J, Moscoso J, Ruiz-del-Valle V, Lowy E, Serrano-Vela JI, Ira-Cachafeiro J, Arnaiz-Villena A (2006b) Conjoint mitochondrial phylogenetic trees for canaries (Serinus spp.) and goldfinches (Carduelis spp.) show several specific polytomies. Ardeola 53:1–17Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2007

Authors and Affiliations

  • Antonio Arnaiz-Villena
    • 1
    Email author
  • Ernesto Lowy
    • 1
  • Valentín Ruiz-del-Valle
    • 1
  • Helena Westerdahl
    • 2
  • Juan Moscoso
    • 1
  • Juan Ignacio Serrano-Vela
    • 1
  • Håkan Witzell
    • 3
  • Jorge Zamora
    • 1
  1. 1.Department of Immunology and Internal Medicine, Faculty of Medicine, Hospital 12 de Octubre and The Madrid Regional Transfusion Blood CenterUniversidad Complutense de MadridMadridSpain
  2. 2.Department of Animal EcologyKonrad Lorenz Institute of EthologyLundSweden
  3. 3.Botanical MuseumLund UniversityLundSweden

Personalised recommendations