Journal of Ornithology

, Volume 147, Issue 2, pp 344–353 | Cite as

Climate change and timing of spring migration in the long-distance migrant Ficedula hypoleuca in central Europe: the role of spatially different temperature changes along migration routes

Original Article


Coinciding with increasing spring temperatures in Europe, many migrants have advanced their arrival or passage times over the last decades. However, some species, namely long-distance migrants, could be constrained in their arrival dates due to their largely inherited migratory behaviour and thus a likely inflexibility in their response to exogenous factors. To examine this hypothesis for pied flycatchers (Ficedula hypoleuca), we tested the effects of the temperature regimes along their migration routes north of the Sahara on their arrival times in central Europe. To do so, we developed a site-independent large-scale approach based on temperature data available on the Internet. Temperature regimes along the migration routes of pied flycatchers within Europe convincingly correlate with their first arrival times. It can be concluded that the progression of spring migration in this species is strongly influenced by temperature en route. Because of the recent inconsistent climatic changes in various parts of Europe, we hypothesize that individuals migrating along different routes will be unequally affected by further climatic changes.


Climate change Local temperature North Atlantic Oscillation Pied flycatcher Timing of spring migration 



We are especially thankful to all persons collecting and providing field data, namely Ute Rahne (Braunschweig), Hans-Hermann Geißler (Hamburg), Stefan Fischer (Berlin) and the almost uncountable number of people working at the Helgoland station. Franz Bairlein, Timothy Coppack, Kathrin Hüppop, Esa Lehikoinen and an anonymous referee provided constructive comments on an earlier draft of our manuscript. Timothy Coppack further polished our English.


  1. Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen E (2004) Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob Change Biol 10:1610–1617CrossRefGoogle Scholar
  2. Anthes N (2004) Long-distance migration timing of Tringa sandpipers adjusted to recent climate change. Bird Study 51:203–211Google Scholar
  3. Bairlein F, Hüppop O (2004) Migratory fuelling and global climate change. In: Møller AP, Fiedler W, Berthold P (eds) Advances in ecological research, vol 35. Birds and climate change. Elsevier Science, London, pp 33–47CrossRefGoogle Scholar
  4. Bairlein F, Winkel W (2001) Birds and climate change. In: Lozán JL, Graßl H, Hupfer P (eds) Climate of the 21st century: changes and risks. Scientific facts. GEO, Hamburg, pp 278–282Google Scholar
  5. Berthold P (1996) Control of bird migration. Chapman & Hall, LondonGoogle Scholar
  6. Berthold P (2001) Bird migration: a general survey, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  7. Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuizen AJ, Eeva T, Enemar A, Gustafsson L, Ivankina EV, Järvinen A, Metcalfe NB, Nyholm NEI, Potti J, Ravussin P-A, Sanz JJ, Silverin B, Slater FM, Sokolov LV, Török J, Winkel W, Wright J, Zang H, Visser ME (2004) Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc Lond B 271:1657–1662CrossRefGoogle Scholar
  8. Both C, Bijlsma RG, Visser ME (2005) Climatic effects on timing of spring migration and breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. J Avian Biol 36:368–373CrossRefGoogle Scholar
  9. Both C, Visser ME (2001) Adjustment of climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298CrossRefPubMedGoogle Scholar
  10. Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman & Hall, LondonGoogle Scholar
  11. Coppack T, Both C (2002) Predicting life-cycle adaptation of migratory birds to global climate change. Ardea 90:369–378Google Scholar
  12. Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci USA 100:12219–12222CrossRefPubMedGoogle Scholar
  13. Crick HQP (2004) The impact of climate change on birds. Ibis 146(Suppl 1):48–56CrossRefGoogle Scholar
  14. Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland CK (1997) Maximum and minimum temperature trends for the globe. Science 277:364–367CrossRefGoogle Scholar
  15. Fischer S (2002) Frühjahrsankunft ziehender Singvogelarten in Berlin über 26 Jahre. Berl Ornithol Ber 12:145–166Google Scholar
  16. Gwinner E (1996) Circannual clocks in avian reproduction and migration. Ibis 138:47–63Google Scholar
  17. Hölzinger J (1997) Ficedula hypoleuca (Pallas 1764) Trauerschnäpper. In: Hölzinger J (eds) Die Vögel Baden-Württembergs vol 3.2, Singvögel 2. Ulmer, Stuttgart, pp 63–7Google Scholar
  18. Huin N, Sparks TH (1998) Arrival and progression of the Swallow Hirundo rustica through Britain. Bird Study 45:361–370Google Scholar
  19. Huin N, Sparks TH (2000) Spring arrival patterns of the Cuckoo Cuculus canorus, Nightingale Luscinia megarhynchos and Spotted Flycatcher Muscicapa striata in Britain. Bird Study 47:22–31CrossRefGoogle Scholar
  20. Hüppop K, Hüppop O (2004) Atlas zur Vogelberingung auf Helgoland. Teil 2 Phänologie im Fanggarten von 1961 bis 2000. Vogelwarte 42:285–343Google Scholar
  21. Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc Lond B 270:233–240CrossRefGoogle Scholar
  22. Klein Tank AMG, Können GP (2003) Trends and indices of daily temperature and precipitation extremes in Europe, 1946–1999. J Clim 16:3665–3680CrossRefGoogle Scholar
  23. Kok OB, van Ee CA, Nel DG (1991) Day length determines departure date of the spotted flycatcher Muscicapa striata from its winter quarters. Ardea 79:63–66Google Scholar
  24. Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. In: Møller AP, Fiedler W, Berthold P (eds) Advances in ecological research, vol 35. Birds and climate change. Elsevier Science, London, pp 1–31CrossRefGoogle Scholar
  25. Lundberg A, Alatalo RV (1992) The Pied Flycatcher. Poyser, LondonGoogle Scholar
  26. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1,500. Science 303:1499–1503CrossRefPubMedGoogle Scholar
  27. Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315CrossRefPubMedGoogle Scholar
  28. Potti J (1998) Arrival time from spring migration in male pied flycatchers: individual consistency and familial resemblance. Condor 100:702–708CrossRefGoogle Scholar
  29. Przybylo R, Sheldon BC, Merila J (2000) Climatic effects on breeding and morphology: evidence for climatic plasticity. J Anim Ecol 69:395–403CrossRefGoogle Scholar
  30. Rosenfeld J, Fagerström T (1980) Vårflyttningens förlopp över Örskår hos tretton nattflyttande småfåglar. Var Fagelvarld 39:217–224Google Scholar
  31. Saino N, Szép T, Romano M, Rubolini D, Spina F, Møller AP (2004) Ecological conditions during winter predict arrival date at the breeding quarters in a trans-Saharan migratory bird. Ecol Lett 7:21–25CrossRefGoogle Scholar
  32. Sanz JJ (2003) Large-scale effect of climate change on breeding parameters of pied flycatchers in Western Europe. Ecography 26:45–50CrossRefGoogle Scholar
  33. Schönwiese C-D, Hupfer P (2001) Observed climate change within the 19th and 20th century: Danger ahead? In: Lozán JL, Graßl H, Hupfer P (eds) Climate of the 21st Century: changes and risks. Scientific facts. GEO, Hamburg, pp 101–115Google Scholar
  34. Sokolov LV (2000) Spring ambient temperature as an important factor controlling timing of arrival, breeding, post-fledging dispersal and breeding success of Pied Flycatcher Ficedula hypoleuca in Eastern Baltic. Avian Ecol Behav 5:79–104Google Scholar
  35. Sokolov LV, Kosarev VV (2003) Relationship between timing of arrival of passerines to the Courish Spit and North Atlantic Oscillation index (NAOI) and precipitation in Africa. Proc Zool Inst Russ Akad Sci 299:141–154Google Scholar
  36. Sparks TH, Roberts DR, Crick HQP (2001) What is the value of first arrival dates of spring migrants in phenology? Avian Ecol Behav 7:75–85Google Scholar
  37. Sparks TH, Bairlein F, Bojarinova JG, Hüppop O, Lehikoinen EA, Rainio K, Sokolov LV, Walker D (2005) Examining the total arrival distribution of migratory birds. Glob Change Biol 11:22–30CrossRefGoogle Scholar
  38. Stervander M, Lindström Å, Jonzén N, Andersson A (2005) Timing of spring migration in birds: long-term trends, North Atlantic Oscillation and the significance of different migration routes. J Avian Biol 36:210–221CrossRefGoogle Scholar
  39. Strode PK (2003) Implications of climate change for North American wood warblers (Parulidae). Glob Change Biol 9:1137–1144CrossRefGoogle Scholar
  40. Tryjanowski P, Kuzniak S, Sparks T (2002) Earlier arrival of some farmland migrants in western Poland. Ibis 144:62–68CrossRefGoogle Scholar
  41. Vähätalo AV, Rainio K, Lehikoinen A, Lehikoinen E (2004) Spring arrival of birds depends on the North Atlantic Oscillation. J Avian Biol 35:210–216CrossRefGoogle Scholar
  42. Walther Y, Bingman VO (1984) Orientierungsverhalten von Trauerschnäppern (Ficedula hypoleuca) während des Frühjahrszuges in Abhängigkeit von Wetterfaktoren. Vogelwarte 32:201–205Google Scholar
  43. Winkel W, Hudde H (1993) Ficedula hypoleuca (Pallas 1764)–Trauerfliegenschnäpper, Trauerschnäpper. In: Glutz von Blotzheim UN (eds) Handbuch der Vögel Mitteleuropas vol 13/I. Aula, Wiesbaden, pp 165–263Google Scholar
  44. Zalakevicius M, Zalakeviciute R (2001) Global climate warming and birds: a review of research in Lithuania. Folia Zool 50:1–17Google Scholar
  45. Zink G (1985) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel. 4. Lieferung. Vogelzug, MöggingenGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2006

Authors and Affiliations

  1. 1.Institute of Avian Research "Vogelwarte Helgoland", InselstationHelgolandGermany
  2. 2.Institute of Avian Research "Vogelwarte Helgoland", Working Group Population EcologyCremlingen-WeddelGermany

Personalised recommendations