Advertisement

Journal of Ornithology

, Volume 147, Issue 3, pp 448–456 | Cite as

Rhodopechys obsoleta (desert finch): a pale ancestor of greenfinches (Carduelis spp.) according to molecular phylogeny

  • Jorge Zamora
  • Ernesto Lowy
  • Valentin Ruiz-del-Valle
  • Juan Moscoso
  • Juan Ignacio Serrano-Vela
  • Juan Rivero-de-Aguilar
  • Antonio Arnaiz-Villena
Original Article

Abstract

The evolutionary history of three out of four birds traditionally classified into the genus Rhodopechys birds has been studied by comparing their mitochondrial cytochrome b DNA sequence with that of greenfinches and other genus Carduelis finches. The desert finch (Rhodopechys obsoleta) or a sister extinct species seems to have existed about 6 million years ago in Asian and perhaps African desert-like areas. This bird has no molecular relationship with other Rhodopechys birds and seems to have given rise to the greenfinches radiation, probably by allopatry of marginal or isolated groups; the latter would have evolved to green plumage colours and more simple song modulations (i.e., greenfinches). The possible role of assortative mating and the newly postulated acquired phenotypic characters in greenfinches speciation are discussed.

Keywords

Carduelis Desert finch mtDNA Phylogeny Rhodopechys Greenfinch 

Notes

Acknowledgements

This work was supported by grants from the Spanish Ministry of Science PM-1999-23 and BMC-2001-1299 Mufua Madrilen̄a Automovilista, and was in agreement with all the laws valid in the countries where samples were taken. We are also indebted to the following Spanish ornithologists: Bernardino Yebes, Guillermo Cabrera Amat, Gloria Gardó, Francisco Mira Chinchilla, Arturo Fernandez Cagiao and Álvaro Guillén.

References

  1. Allende LM, Rubio I, Ruiz-del-Valle V, Guillen J, Martinez-Laso J, Lowy E, Varela P, Zamora J, Arnaiz-Villena A (2001) The Old World sparrows (genus Passer) phylogeography and their relative abundance of nuclear mtDNA pseudogenes. J Mol Evol 53:144–154PubMedGoogle Scholar
  2. Arnaiz-Villena A, Alvarez-Tejado M, Ruiz-del-Valle V, Garcia-de-la-Torre C, Varela P, Recio MJ, Ferre S, Martinez-Laso J (1998) Phylogeny and rapid northern and southern hemisphere speciation of goldfinches during the Miocene and Pliocene epochs. Cell Mol Life Sci 54:1031–1041CrossRefPubMedGoogle Scholar
  3. Arnaiz-Villena A, Alvarez-Tejado M, Ruiz-del-Valle V, Garcia-de-la-Torre C, Varela P, Recio MJ, Ferre S, Martinez-Laso J (1999) Rapid radiation of canaries (Genus Serinus). Mol Biol Evol 16:2–11Google Scholar
  4. Arnaiz-Villena A, Guillen J, Ruiz-del-Valle V, Lowy E, Zamora J, Varela P, Stefani D, Allende LM (2001) Phylogeography of crossbills, bullfinches, grosbeaks, and rosefinches. Cell Mol Life Sci 58:1159–1166PubMedCrossRefGoogle Scholar
  5. Arnaiz-Villena A, Timon M, Corell A, Perez-Aciego P, Martin-Villa JM, Regueiro JR (1992) Primary immunodeficiency caused by mutations in the gene encoding the CD3-gamma subunit of the T-lymphocyte receptor. N Engl J Med 327:529–533PubMedCrossRefGoogle Scholar
  6. Blake N (2001) Trumpeter finch. http://www.nigelblake.co.ukGoogle Scholar
  7. Burns KJ (1997) Molecular systematics of tanagers (Thraupinae): evolution and biogeography of a diverse radiation of neotropical birds. Mol Phylogenet Evol 8:334–348CrossRefPubMedGoogle Scholar
  8. Burtt EHJ, Ichida JM (2004) Gloger’s rule, feather-degrading bacteria, and color variation among Song Sparrows. Condor 106:681–686CrossRefGoogle Scholar
  9. Cibois A, Pasquet E, Schulenberg TS (1999) Molecular systematics of the malagasy babblers (Passeriformes: Sylviidae), Based on cytochrome b and 16S rRNA sequences. Mol Phylogenet Evol 13:581–595CrossRefPubMedGoogle Scholar
  10. Cicero C, Johnson NK (1998) Molecular phylogeny and ecological diversification in a clade of New World songbirds (genus Vireo). Mol Ecol 7:1359–1370CrossRefPubMedGoogle Scholar
  11. Clement P, Harris P, Davies J (1993) Finches and Sparrows. Christopher Helm, LondonGoogle Scholar
  12. Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol 212:599–634CrossRefPubMedGoogle Scholar
  13. Edwards SV, Arctander P, Wilson AC (1991) Mitochondrial resolution of a deep branch in the genealogical tree for perching birds. Proc R Soc Lond B 243:99–107CrossRefGoogle Scholar
  14. Erard C, Etchécopar RD (1970) Contribution à l’étude des oiseaux d’Iran (Résultats de la mission Etchecopar 1967). du Muséum, ParisGoogle Scholar
  15. Ericson PGP, Christidis L, Irestedt M, Norman JA (2002) Systematic affinities of the lyrebirds (Passeriformes: Menura), with a novel classification of the major groups of passerine birds. Mol Phylogenet Evol 25:53–62CrossRefPubMedGoogle Scholar
  16. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  17. Felsenstein J (1985) Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–795CrossRefGoogle Scholar
  18. Fitch WM (1971) Toward defining the course of evolution, minimum change from a specific tree topology. Syst Zool 20:406–415CrossRefGoogle Scholar
  19. Fleischer RC, McIntosh C, Tarr CL (1998) Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol 7:533–545CrossRefPubMedGoogle Scholar
  20. Friesen VL, Montevecchi WA, Baker AJ, Barrets RT, Davidson WS (1996) Population differentiation and evolution in the common guillemot Uuria aalge. Mol Ecol 5:793–805PubMedCrossRefGoogle Scholar
  21. Gill FB (1999) Ornithology. Freeman, New YorkGoogle Scholar
  22. Grant PR, Grant BR (1997) Genetics and the origin of bird species. Proc Natl Acad Sci USA 94:7768–7775CrossRefPubMedGoogle Scholar
  23. Groth JG (1998) Molecular phylogenetics of finches and sparrows: consequences of character state removal in cytochrome b sequences. Mol Phylogenet Evol 10:377–390CrossRefPubMedGoogle Scholar
  24. Haavie J, Borge T, Bures S, Garamszegi LZ, Lampe HM, Moreno J, Qvarnström A, Török J, Sætre GP (2004) Flycatcher song in allopatry and sympatry—convergence, divergence and reinforcement. J Evol Biol 17:227–237CrossRefPubMedGoogle Scholar
  25. Hackett SJ (1996) Molecular phylogenetics and biogeography of tanagers in the genus Ramphocelus (Aves). Mol Phylogenet Evol 5:368–382CrossRefPubMedGoogle Scholar
  26. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  27. Hasegawa M, Thorne JL, Kishino H (2003) Time scale of eutherian evolution estimated without assuming a constant rate of molecular evolution. Genes Genet Syst 78:267–283CrossRefPubMedGoogle Scholar
  28. Helbig AJ, Seibold I (1999) Molecular phylogeny of Paleartic-African Acrocephalus and Hippolais warblers (Aves: Sylviidae). Mol Phylogenet Evol 11:246–260CrossRefPubMedGoogle Scholar
  29. Hillis DM, Huelsenbeck JP, Cunningham CW (1994) Application and accuracy of molecular phylogenies. Science 264:671–677PubMedCrossRefGoogle Scholar
  30. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144PubMedCrossRefGoogle Scholar
  31. Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academic Press, New YorkGoogle Scholar
  32. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29:170–179PubMedCrossRefGoogle Scholar
  33. Klicka J, Zink RM, Winkler K (2003) Longspurs and snow buntings: phylogeny and biogeography of a high-latitude clade (Calcarius). Mol Phylogenet Evol 26:165–175CrossRefPubMedGoogle Scholar
  34. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200PubMedCrossRefGoogle Scholar
  35. Kornegay JR, Kocher TD, Williams LA, Wilson AC (1993) Pathways of lysozyme evolution inferred from the sequences of cytochrome b in birds. J Mol Evol 37:367–379CrossRefPubMedGoogle Scholar
  36. Krajewski C, King DG (1996) Molecular divergence and phylogeny: rates and patterns of cytochrome b evolution in cranes. Mol Biol Evol 13:21–30PubMedGoogle Scholar
  37. Kriukov AP, Suzuki H (2000) Phylogeographic carrion, hooded and jungle crows (Aves, Corvidae) from data on partial sequencing of the mitochondrial DNA cytochrome B gene. Genetika 36:1111–1118PubMedGoogle Scholar
  38. Kumar S, Tamura K, Ingrid B, Nei M (2001) MEGA2: Molecular evolutionary genetics analysis software, Version 2.0. Arizona State University, TempeGoogle Scholar
  39. Li W, Wu C, Luo C (1985) A new method for estimating synonymous and non-synonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174PubMedGoogle Scholar
  40. Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612PubMedGoogle Scholar
  41. Lougheed SC, Freeland JR, Handford P, Boag PT (2000) A molecular phylogeny of Warbling-Finches (Poospiza): paraphyly in a neotropical emberizid genus. Mol Phylogenet Evol 17:367–378CrossRefPubMedGoogle Scholar
  42. McNaught MK, Owens IPF (2002) Interspecific variation in plumage colour among birds: species recognition or light environment? J Evol Biol 15:505–514CrossRefGoogle Scholar
  43. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  44. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  45. Norman JA, Christidis L, Joseph L, Slikas B, Alpers D (2002) Unravelling a biogeographical knot: origin of the “leapfrog” distribution pattern of Australo-Papuan sooty owls (Strigiformes) and logrunners (Passeriformes). Proc R Soc Lond B 269:2127–2133CrossRefGoogle Scholar
  46. Omland KE, Tarr CL, Boarma WI, Marzluff JM, Fleischer RC (2000) Cryptic genetic variation and paraphyly in ravens. Proc R Soc Lond B 22:2475–2482CrossRefGoogle Scholar
  47. Packert M, Martens J, Kosuch J, Nazarenko AA, Veith M (2003) Phylogenetic signal in the song of crests and kinglets (Aves: Regulus). Evolution Int J Org Evolution 57:616–629PubMedGoogle Scholar
  48. Pamilo P, Bianchi N (1993) Evolution of the Zfx and Zfy, genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281PubMedGoogle Scholar
  49. Pasquet E, Cibois A, Baillon F, Erard C (2002) What are African monarchs (Aves, Passeriformes)? A phylogenetic analysis of mitochondrial genes. C R Biol 325:107–118PubMedCrossRefGoogle Scholar
  50. Prager EM, Wilson AC (1988) Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J Mol Evol 27:326–335PubMedCrossRefGoogle Scholar
  51. Questiau S, Eybert MC, Gaginskaya AR, Gielly L, Taberlet P (1998) Recent divergence between two morphologically differentiated subspecies of bluethroat (Aves: Muscicapidae: Luscinia svecica) inferred from mitochondrial DNA sequence variation. Mol Ecol 7:239–245CrossRefPubMedGoogle Scholar
  52. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  53. Salzburger W, Martens J, Nazarenko AA, Sun YH, Dallinger R, Sturmbauer C (2002a) Phylogeography of the Eurasian Willow Tit (Parus montanus) based on DNA sequences of the mitochondrial cytochrome b gene. Mol Phylogenet Evol 24:26–34CrossRefGoogle Scholar
  54. Salzburger W, Martens J, Sturmbauer C (2002b) Paraphyly of the Blue Tit (Parus caeruleus) suggested from cytochrome b sequences. Mol Phylogenet Evol 24:19–25CrossRefGoogle Scholar
  55. Sato A, O’hUigin C, Figueroa F, Grant PR, Grant BR, Tichy H, Klein J (1999) Phylogeny of Darwin’s finches as revealed by mtDNA sequences. Proc Natl Acad Sci USA 96:5101–5106CrossRefPubMedGoogle Scholar
  56. Sato A, Tichy H, O’hUigin C, Grant PR, Grant BR, Klein J (2001) On the origin of Darwin’s finches. Mol Biol Evol 18:299–311PubMedGoogle Scholar
  57. Sibley C, Ahlquist J (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New HavenGoogle Scholar
  58. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods) Version 4. Sinauer, Sunderland, Mass.Google Scholar
  59. Templeton A (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221–244CrossRefGoogle Scholar
  60. Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657PubMedGoogle Scholar
  61. Uriarte-Cantolla A (2003) Historia del Clima de la Tierra. Servicio Central de Publicaciones del Gobierno Vasco, Vitoria-Gasteiz, SpainGoogle Scholar
  62. van den Elzen R, Guillen J, Ruiz-del-Valle V, Allende LM, Lowy E, Zamora J, Arnaiz-Villena A (2001) Both morphological and molecular characters support speciation of South American siskins by sexual selection. Cell Mol Life Sci 58:2117–2128PubMedCrossRefGoogle Scholar
  63. Voelker G (1999) Molecular evolutionary relationships in the avian genus Anthus (Pipits: Motacillidae). Mol Phylogenet Evol 11:84–94CrossRefPubMedGoogle Scholar
  64. Whittingham LA, Slikas B, Winkler DW, Sheldon FH (2002) Phylogeny of the tree swallow genus, Tachycineta (Aves: Hirundinidae), by Bayesian analysis of Mitochondrial DNA sequences. Mol Phylogenet Evol 22:430–441CrossRefPubMedGoogle Scholar
  65. Yang Z (1994) Estimating the pattern of nucleotide substitution. J Mol Evol 39:105–111PubMedGoogle Scholar
  66. Yuri T, Mindell D (2002) Molecular phylogenetic analysis of Fringillidae, “New World nine-primaried oscines” (Aves: Passeriformes). Mol Phylogenet Evol 23:229–243CrossRefPubMedGoogle Scholar
  67. Zink RM, Blackwell RC (1998) Molecular systematics and biogeography of Aridland gnatcatchers (Genus Polioptila) and evidence supporting species status of the California gnatcatcher (Polioptila californica). Mol Phylogenet Evol 9:26–32CrossRefPubMedGoogle Scholar
  68. Zink RM, Weller SJ, Blackwell RC (1998) Molecular phylogenetics of the Avian Genus Pipilo and a biogeographic argument for taxomonic uncertainty. Mol Phylogenet Evol 10:191–201CrossRefPubMedGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2005

Authors and Affiliations

  • Jorge Zamora
    • 1
  • Ernesto Lowy
    • 1
  • Valentin Ruiz-del-Valle
    • 1
  • Juan Moscoso
    • 1
  • Juan Ignacio Serrano-Vela
    • 1
  • Juan Rivero-de-Aguilar
    • 1
  • Antonio Arnaiz-Villena
    • 1
    • 2
  1. 1.Department of Immunology and Molecular BiologyUniversidad ComplutenseMadridSpain
  2. 2.Departamento de Microbiología I (Inmunología), Facultad de MedicinaUniversidad ComplutenseMadridSpain

Personalised recommendations