Journal of Ornithology

, Volume 145, Issue 3, pp 188–198 | Cite as

The phylogenetic relationships of the early Tertiary Primoscenidae and Sylphornithidae and the sister taxon of crown group piciform birds

  • Gerald Mayr
Original Article


The phylogenetic relationships of the early Tertiary Primoscenidae and Sylphornithidae are, for the first time, evaluated in a cladistic context. Both taxa include small arboreal birds with a permanently (Primoscenidae) or facultatively (Sylphornithidae) retroverted fourth toe. Primoscenidae were hitherto considered to be most closely related to either woodpeckers and allies (Piciformes) or to songbirds (Passeriformes), whereas the Sylphornithidae were classified into the roller-kingfisher-hornbill assemblage (“Coraciiformes”). Analysis of 56 morphological characters supports monophyly of a clade including Sylphornithidae and crown group Piciformes and results in sister group relationship between Passeriformes and a clade including Primoscenidae and the early Miocene Zygodactylidae. However, an analysis in which the search was constrained to trees supporting piciform affinities of the Primoscenidae resulted in trees that were only five steps longer than those from the primary analysis. The character evidence for each hypothesis is discussed. The systematic position of the Primoscenidae appears to be connected to the identity of the sister taxon of crown group Piciformes, as the primary search indicated Upupiformes (hoopoes and wood-hoopoes) and Bucerotiformes (hornbills) as sister taxa of Piciformes, whereas the constrained search resulted in sister group relationship between Coliiformes (mousebirds) and Piciformes. Songbirds do not show the slightest indication of a zygodactyl foot but in these birds the hindtoe is greatly elongated, an alternative strategy to increase the grasping capabilities of the foot. If Passeriformes are indeed the sister group of the clade (Primoscenidae + Zygodactylidae), these birds would be an example that, in closely related taxa, selection towards the same functional demands can result in entirely different morphological specializations.


Aves Passeriformes Phylogeny Piciformes Zygodactylidae 



I thank C. Mourer-Chauviré for making available for study specimens of the Sylphornithidae, M. Daniels for enabling me to study his collection, and P. Houde and S. Olson for allowing me to investigate specimens of the Sandcoleidae during an earlier visit to the Smithsonian Institution. I further thank A. Helbig and S. Peters for reviewing the manuscript. I also thank A. Manegold for drawing my attention to the proximally directing process on the proximal phalanx of the major digit in Pici and Galbulae.


  1. Baird RF, Vickers-Rich P (1997) Eutreptodactylus itaboraiensis gen. et. sp. nov., an early cuckoo (Aves: Cuculiformes) from the Late Paleocene of Brazil. Alcheringa 21:123–127Google Scholar
  2. Ballmann P (1969a) Die Vögel aus der altburdigalen Spaltenfüllung von Wintershof (West) bei Eichstätt in Bayern. Zitteliana 1:5-60Google Scholar
  3. Ballmann P (1969b) Les oiseaux miocènes de La Grive-Saint-Alban (Isère). Geobios 2:157–204Google Scholar
  4. Barker FK, Barrowclough GF, Groth JG (2002) A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence. Proc R Soc Lond B 269:295–308CrossRefPubMedGoogle Scholar
  5. Baumel JJ, Witmer LM (1993) Osteologia. In: Baumel JJ, King AS, Breazile JE, Evans, HE, Vanden Berge JC (eds) Handbook of avian anatomy: Nomina Anatomica Avium. Publ Nuttall Ornithol Club 23:45–132Google Scholar
  6. Berman SL, Raikow RJ (1982) The hindlimb musculature of the mousebirds (Coliiformes). Auk 99:41–57Google Scholar
  7. Bock WJ (1974) The avian skeletomuscular system. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 4. Academic Press, New York, pp 119–257Google Scholar
  8. Brom TG (1990) Villi and the phyly of Wetmore’s order Piciformes (Aves). Zool J Linn Soc 98:63–72Google Scholar
  9. Burton PJK (1984) Anatomy and evolution of the feeding apparatus in the avian orders Coraciiformes and Piciformes. Bull Brit Mus Nat Hist Zool 47:331–443Google Scholar
  10. Ericson PGP, Irestedt M, Johansson U (2003) Evolution, biogeography, and patterns of diversification in passerine birds. J Avian Biol 34:3-15Google Scholar
  11. Espinosa de los Monteros A (2000) Higher-level phylogeny of Trogoniformes. Mol Phylogen Evol 14:20–34CrossRefGoogle Scholar
  12. Feduccia A (1974) Morphology of the bony stapes in New and Old World suboscines: new evidence for common ancestry. Auk 91:427–429Google Scholar
  13. Feduccia A (1977) A model for the evolution of perching birds. Syst Zool 26:19–31Google Scholar
  14. Feduccia A (1996) The origin and evolution of birds. Yale University Press, New HavenGoogle Scholar
  15. Feduccia A, Olson SL (1982) Morphological similarities between the Menurae and the Rhinocryptidae, relict passerine birds of the southern hemisphere. Smithson. Contrib Zool 366:1-22Google Scholar
  16. Fischer KH (1987) Eulenreste (Eoglaucidium pallas nov.gen., nov.sp., Strigiformes, Aves) aus der mitteleozänen Braunkohle des Geiseltals bei Halle (DDR). Mitt Zool Mus Berlin 63:137-142Google Scholar
  17. George JC, Berger AJ (1966) Avian myology. Academic Press, New YorkGoogle Scholar
  18. Groth JG, Barrowclough GF (1999) Basal Divergences in Birds and the Phylogenetic Utility of the Nuclear RAG-1 Gene. Mol Phylogen Evol 12:115–123CrossRefGoogle Scholar
  19. Harrison CJO (1982) Cuculiform, piciform and passeriform birds in the Lower Eocene of England. Tert Res 4:71–81Google Scholar
  20. Harrison CJO, Walker CA (1977) Birds of the British Lower Eocene. Tert Res Spec Pap 3:1-52Google Scholar
  21. Höfling E, Alvarenga HMF (2001) Osteology of the shoulder girdle in the Piciformes, Passeriformes and related groups of birds. Zool Anz 240:196–208Google Scholar
  22. Houde P, Olson SL (1992) A radiation of coly-like birds from the early Eocene of North America (Aves: Sandcoleiformes new order). In: Campbell KE (ed) Papers in avian paleontology honoring Pierce Brodkorb. Nat Hist Mus Los Angeles Cty Contrib Sci 36:137–160Google Scholar
  23. Johansson US, Ericson PGP (2003) Molecular support for a sister group relationship between Pici and Galbulae (Piciformes sensu Wetmore 1960). J Avian Biol 34:185–197CrossRefGoogle Scholar
  24. Johansson US, Parsons TJ, Irestedt M, Ericson PGP (2001) Clades within the ‘higher land birds’, evaluated by nuclear DNA sequences. J Zool Syst Evol Res 39:37–51CrossRefGoogle Scholar
  25. Kristoffersen AV (2002) The avian diversity in the latest Paleocene—earliest Eocene Fur Formation, Denmark. A synopsis. PhD thesis, University of CopenhagenGoogle Scholar
  26. Lanyon SM, Zink RM (1987) Genetic variation in piciform birds: monophyly and generic and familial relationships. Auk 104:724–732Google Scholar
  27. Livezey BC, Zusi RL (2001) Higher-order phylogenetics of modern Aves based on comparative anatomy. Neth J Zool 51:179–205CrossRefGoogle Scholar
  28. Maddison WP, Maddison DR (1995) MacClade: Analysis of phylogeny and character evolution, version 3.08a: Sinauer, Sunderland, Mass.Google Scholar
  29. Maurer D, Raikow RJ (1981) Appendicular myology, phylogeny, and classification of the avian order Coraciiformes (including Trogoniformes). Ann Carnegie Mus Nat Hist 50:417–434Google Scholar
  30. Mayr G (1998) “Coraciiforme” und “piciforme” Kleinvögel aus dem Mittel-Eozän der Grube Messel (Hessen, Deutschland). Cour Forsch Inst Senckenberg 205:1-101Google Scholar
  31. Mayr G (2001) A new specimen of the tiny Middle Eocene bird Gracilitarsus mirabilis (new family: Gracilitarsidae). Condor 103:78–84Google Scholar
  32. Mayr G (2004) Morphological evidence for sister group relationship between flamingos (Aves: Phoenicopteridae) and grebes (Podicipedidae). Zool J Linn Soc (in press)Google Scholar
  33. Mayr G, Mourer-Chauviré C (2000) Rollers (Aves: Coraciiformes s.s.) from the Middle Eocene of Messel (Germany) and the Upper Eocene of the Quercy (France). J Vert Palaeontol 20:533–546Google Scholar
  34. Mayr G, Peters DS (1998) The mousebirds (Aves: Coliiformes) from the Middle Eocene of Grube Messel (Hessen, Germany). Senckenbergiana Lethaea 78:179–197Google Scholar
  35. Mayr G, Smith R (2002) Avian remains from the lowermost Oligocene of Hoogbutsel (Belgium). Bull Inst R Sci Nat Belg 72:139–150Google Scholar
  36. Mayr G, Manegold A, Johansson U (2003) Monophyletic groups within “higher land birds” - comparison of morphological and molecular data. J Zool Syst Evol Res 41:233–248CrossRefGoogle Scholar
  37. McKitrick MC (1991) Phylogenetic Analysis of Avian Hindlimb Musculature. Univ Michigan Mus Zool Misc Publ 179:1-85Google Scholar
  38. Mourer-Chauviré C (1988) Le gisement du Bretou (Phosphorites du Quercy, Tarn-et-Garonne, France) et sa faune de vertébrés de l’Eocène supérieur. II Oiseaux. Palaeontographica (A) 205:29–50Google Scholar
  39. Mourer-Chauviré C (1999) Les relations entre les avifaunas du Tertiaire inférieur d’Europe et d’Amérique du Sud. Bull Soc Geol Fr 170:85–90Google Scholar
  40. Olson SL (1983) Evidence for a polyphyletic origin of the Piciformes. Auk 100:126–133Google Scholar
  41. Olson SL, Feduccia A (1979) An Old-World occurrence of the Eocene avian family Primobucconidae. Proc Biol Soc Wash 92:494–497Google Scholar
  42. Raikow RJ, Cracraft J (1983) Monophyly of the Piciformes: a reply to Olson. Auk 100:134–138Google Scholar
  43. Saether OA (1979) Underlying synapomorphies and anagenetic analysis. Zool Scr 8:305–312Google Scholar
  44. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven.Google Scholar
  45. Simpson SF, Cracraft J (1981) The phylogenetic relationships of the Piciformes (Class Aves). Auk 98:481–494Google Scholar
  46. Stegmann B (1965) Funktionell bedingte Eigenheiten am Metacarpus des Vogelflügels. J Ornithol 106:179–189Google Scholar
  47. Steinbacher J (1937) Anatomische Untersuchungen über die systematische Stellung der Galbulidae und Bucconidae. Arch Naturgesch B 6:417–515Google Scholar
  48. Swierczewski EV, Raikow RJ (1981) Hindlimb morphology, phylogeny and classification of the Piciformes. Auk 98:466–480Google Scholar
  49. Swofford DL (1993) PAUP: Phylogenetic analysis using parsimony, version 3.1. Illinois Natural History Survey, ChampaignGoogle Scholar
  50. Tuinen M van, Butvill DB, Kirsch JAW, Hedges SB (2001) Convergence and divergence in the evolution of aquatic birds. Proc R Soc Lond B 268:1345–1350CrossRefPubMedGoogle Scholar
  51. Vanden Berge JC, Zweers GA (1993) Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (eds) Handbook of avian anatomy: Nomina Anatomica Avium. Publ Nuttall Ornithol Club 23:189–247Google Scholar
  52. Wetmore A (1960) A classification for the birds of the world. Smithson Misc Collect 139(11):1–37Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V.  2004

Authors and Affiliations

  1. 1.Division of OrnithologyForschungsinstitut Senckenberg60325 Frankfurt am MainGermany

Personalised recommendations