Journal of Ornithology

, Volume 145, Issue 1, pp 74–78 | Cite as

Prevalence and intensity of excretion of coccidial oocysts in migrating passerines on Helgoland

  • Axel Zinke
  • Bärbel Schnebel
  • Volker Dierschke
  • Martin Ryll
Original Article

Abstract

Prevalence and intensity of excretion of coccidial oocysts in actively migrating passerines (Turdus philomelos, Fringilla coelebs, Sylvia borin, Phoenicurus phoenicurus) were assessed in spring and autumn 2001 during stopovers on Helgoland. All examined species showed low prevalences of oocysts in spring (28–33%) and high prevalences in autumn migration (66–92%). In autumn, there are significant species-specific differences in prevalence and, partially, in intensity of excretion. Ground-feeding Chaffinches most commonly and most intensively shed oocysts (maximal 2,7×106 oocysts per g fresh faeces) indicating that feeding style may influence the parasite load. No significant correlation between parasite load, age, and body condition (fat depots, breast muscle shape, body mass) was found. The connection between feeding style, age, migration, immunocompetence, and survival of passerine hosts on one hand and the particularities of coccidial pathogenicity on the other are discussed.

Keywords

Coccidia Isospora Passeriformes Migration Helgoland 

References

  1. Åkesson S, Hedenström A, Hasselquist D (1995) Stopover and fat accumulation in passerine birds in autumn at Ottenby, southeastern Sweden. Ornis Svecica 5:81–91Google Scholar
  2. Bairlein F (1991a) Nutritional adaptations to fat deposition in the long-distance migratory Garden Warbler Sylvia borin. Proc Int Ornithol Congr 20: 2149–2158Google Scholar
  3. Bairlein F (1991b) Body mass of Garden Warblers (Sylvia borin) on migration: a review of field data. Vogelwarte 36:48–61Google Scholar
  4. Bairlein F (1994) Manual of field methods. European-African songbird migration network. Institut für Vogelforschung, Wilhelmshaven.Google Scholar
  5. Boughton DC (1933) Diurnal gametic periodicity in avian Isospora. Am J Hyg 18:161–184Google Scholar
  6. Box ED (1977) Life cycles of two Isospora species in the canary Serinus canarius Linnaeus. J Protozool 24:57–67PubMedGoogle Scholar
  7. Box ED (1981) Isospora as an extraintestinal parasite of passerine birds. J Protozool 28:244–246Google Scholar
  8. Davidar P, Morton ES (1993) Living with parasites: prevalence and effects of a blood parasite on survivorship in the purple martin. Auk 110:109–116Google Scholar
  9. Dawson RD, Bortolotti GR (2000) Effects of hematozoan parasites on condition and return rates of American Kestrels. Auk 117:373–380Google Scholar
  10. Dierschke V, Bindrich F (2001) Body condition of migrant passerines crossing a small ecological barrier. Vogelwarte 41:119–132Google Scholar
  11. Dolnik OV (1998) Isospora coccidia (Protozoa: Eimeriidae) of passerine birds on the Courish Spit. Bull Scand Soc Parasitol 8:58–59Google Scholar
  12. Dolnik OV (2002) Some aspects of the biology and host-parasite interactions of Isospora spp. (Protozoa: Coccidiida) of passerine birds. Dissertation, University of OldenburgGoogle Scholar
  13. Dorrestein GM (1996) Medicine and surgery of canaries and finches. In: Rosskopf W, Woerpel R (eds) Diseases of cage and aviary birds. Williams and Wilkins, Baltimore, pp 915–927Google Scholar
  14. Dorrestein GM, Kummerfeld N (1998) Singvögel—Endoparasiten. In: Gabrisch K, Zwart P (eds) Krankheiten der Heimtiere, 4th edn. Schlütersche, Hannover, pp 358–365Google Scholar
  15. Gryczyńska A, Dolnik O, Mazgajski TD (1999) Parasites of Chaffinch (Fringilla coelebs) population. Part I. Coccidia (Protozoa, Apicomplexa). Wiad Parazytol 45:495–500Google Scholar
  16. Hanssen SA, Folstad I, Erikstad KE, Oksanen A (2003) Costs of parasites in common eiders: effects of antiparasite treatment. Oikos 100:105–111Google Scholar
  17. Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic Press, LondonGoogle Scholar
  18. Kaiser A (1993) A new multi-category classification of subcutaneous fat deposits of songbirds. J Field Ornithol 64:246–255Google Scholar
  19. Kroll H (1972) Zur Nahrungsökologie der Gartengrasmücke (Sylvia borin) beim Herbstzug 1969 auf Helgoland. Vogelwarte 26:280–285Google Scholar
  20. Kruszewicz A, Dyrcz A (2000) Intestinal parasites in five species of the genus Acrocephalus. Acta Ornithol 35:153–158Google Scholar
  21. Kummerfeld N (2003) Parasitäre Erkrankungen. In: Kaleta EF, Krautwald-Junghanns M-E (eds) Kompendium der Ziervogelkrankheiten, 2nd edn. Schlütersche, Hannover, pp 206–229Google Scholar
  22. Levine ND (1982) The genus Atoxoplasma (Protozoa, Apicompolexa). J Parasitol 68:719–723PubMedGoogle Scholar
  23. Mazgajski TD, Kędra AH (1998) Endoparasite Isospora sp. (Coccidia, Eimeriidae) affects the growth of starling Sturnus vulgaris nestling. Acta Parasitol 43:214–216Google Scholar
  24. Milde K (1979) Light and electron microscopic studies on isosporan parasites (Sporozoa) in sparrows (Passer domesticus L.). Protistologica 15:607–627Google Scholar
  25. Moritz D (1982) Langfristige Bestandsschwankungen ausgewählter Passeres nach Fangergebnissen auf Helgoland. Seevögel 3 [suppl]:13–24Google Scholar
  26. Ottich I (2002): Nahrungsangebot und -nutzung durch frugivore Zugvögel auf Helgoland. Diplomarbeit, University of Frankfurt am MainGoogle Scholar
  27. Pellérdy PL (1974) Coccidia and coccidiosis. Akademiai Kiadó, Budapest, HungaryGoogle Scholar
  28. Raiss R (1976) Zur Nahrungsökologie der Singdrossel (Turdus ph. philomelos C.L. Brehm) auf dem Frühjahrszug in Helgoland. Zool Anz 196:201–211Google Scholar
  29. Rommel M (2000) Protozoologische Methoden. In: Rommel M, Eckert J, Kutzer E, Körtling W, Schneider T (eds.) Veterinärmedizinische Parasitologie, 5th edn. Blackwell, Berlin, pp 61–68Google Scholar
  30. Schaub M, Jenni L (2000) Body mass of six long-distance migrant passerine species along the autumn migration route. J Ornithol 141:441–460CrossRefGoogle Scholar
  31. Scholtyseck E (1956) Untersuchungen über die Coccidieninfektion bei Vögeln. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 165:275–289Google Scholar
  32. Schwalbach G (1959) Untersuchungen und Beobachtungen an Coccidien der Gattungen Eimeria, Isospora und Caryospora bei Vögeln mit einer Beschreibung von sechzehn neuen Arten. Arch Protistenkd 104:431–491Google Scholar
  33. SPSS (1998) SPSS for Windows 8.0. SPSS, Chicago, Ill.Google Scholar
  34. Svobodová M (1994) Isospora, Caryospora and Eimeria (Apicomplexa: Eimeriidae) in passeriform birds from Czech Republic. Acta Protozool 33:101–108Google Scholar
  35. Svobodová M, Cibulková M (1995) Isospora sp. (Apicomplexa: Eimeriidae) in icterine warbler (Hippolais icterina, Passeriformes: Sylviidae): the possibility of parents to nestlings transmission. Acta Protozool 34:233–235Google Scholar
  36. Valkiûnas G (1993) Pathogenic influence of haemosporidians and trypanosomes on wild birds in the field conditions: facts and hypothesis. Ekologija 1:47–60Google Scholar
  37. Wetzel R (1951) Verbesserte McMaster-Kammer zum Auszählen von Wurmeiern. Tierärztl Umsch 6:209–210Google Scholar
  38. Yakimoff WL, Gousseff WF (1938) Les coccidies du pinson (Fringilla coelebs L.). Ann Soc Belge Med Trop 18:523–525Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V.  2004

Authors and Affiliations

  • Axel Zinke
    • 1
  • Bärbel Schnebel
    • 1
  • Volker Dierschke
    • 2
  • Martin Ryll
    • 1
  1. 1.Klinik für Zier- und Wildvögel (Klinik für Geflügel)Tierärztliche Hochschule Hannover30173 HannoverGermany
  2. 2.Institut für Vogelforschung “Vogelwarte Helgoland”Inselstation Helgoland27494 HelgolandGermany

Personalised recommendations