Skip to main content
Log in

Cardiorenal sodium MRI in small rodents using a quadrature birdcage volume resonator at 9.4 T

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Design, implementation, evaluation and application of a quadrature birdcage radiofrequency (RF) resonator tailored for renal and cardiac sodium (23Na) magnetic resonance imaging (MRI) in rats at 9.4 T.

Materials and methods

A low pass birdcage resonator (16 rungs, din = 62 mm) was developed. The transmission field (B1+) was examined with EMF simulations. The scattering parameter (S-parameter) and the quality factor (Q-factor) were measured. For experimental validation B1+-field maps were acquired with the double-angle method. In vivo sodium imaging of the heart (spatial resolution: (1 × 1 × 5) mm3) and kidney (spatial resolution: (1 × 1 × 10) mm3) was performed with a FLASH technique.

Results

The RF resonator exhibits RF characteristics, transmission field homogeneity and penetration that afford 23Na MR in vivo imaging of the kidney and heart at 9.4 T. For the renal cortex and medulla a SNRs of 8 and 13 were obtained and a SNRs of 14 and 15 were observed for the left and right ventricle.

Discussion

These initial results obtained in vivo in rats using the quadrature birdcage volume RF resonator for 23Na MRI permit dedicated studies on experimental models of cardiac and renal diseases, which would contribute to translational research of the cardiorenal syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52(19):1527–1539

    PubMed  Google Scholar 

  2. Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, Bellomo R, Berl T, Bobek I, Cruz DN, Daliento L, Davenport A, Haapio M, Hillege H, House AA, Katz N, Maisel A, Mankad S, Zanco P, Mebazaa A, Palazzuoli A, Ronco F, Shaw A, Sheinfeld G, Soni S, Vescovo G, Zamperetti N, Ponikowski P (2010) Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 31(6):703–711

    PubMed  Google Scholar 

  3. Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, Lerma EV, Mezue K, Molitch M, Mullens W, Ronco C, Tang WHW, McCullough PA (2019) Cardiorenal Syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation 139(16):e840–e878

    PubMed  Google Scholar 

  4. Carubelli V, Metra M, Lund LH (2018) Negotiating renal dysfunction when treating patients with heart failure. Expert Rev Cardiovasc Ther 16(2):113–122

    CAS  PubMed  Google Scholar 

  5. Damman K, Testani JM (2015) The kidney in heart failure: an update. Eur Heart J 36(23):1437–1444

    PubMed  PubMed Central  Google Scholar 

  6. van Deursen VM, Damman K, van der Meer P, Wijkstra PJ, Luijckx GJ, van Beek A, van Veldhuisen DJ, Voors AA (2014) Co-morbidities in heart failure. Heart Failure Rev 19(2):163–172

    CAS  Google Scholar 

  7. Braam B, Joles JA, Danishwar AH, Gaillard CA (2014) Cardiorenal syndrome-current understanding and future perspectives. Nat Rev Nephrol 10(1):48–55

    CAS  PubMed  Google Scholar 

  8. Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S (2016) Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol 12(10):610–623

    CAS  PubMed  Google Scholar 

  9. Tuegel C, Bansal N (2017) Heart failure in patients with kidney disease. Heart 103(23):1848–1853

    CAS  PubMed  Google Scholar 

  10. Douglas C, Eaton JPP (2009) Vander's renal physiology, 7th edn. Mc Graw Hill Lange, New York

    Google Scholar 

  11. Haneder S, Juras V, Michaely HJ, Deligianni X, Bieri O, Schoenberg SO, Trattnig S, Zbyn S (2014) In vivo sodium (23Na) imaging of the human kidneys at 7 T: preliminary results. Eur Radiol 24(2):494–501

    PubMed  Google Scholar 

  12. Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int 65(3):927–935

    PubMed  Google Scholar 

  13. Maril N, Rosen Y, Reynolds GH, Ivanishev A, Ngo L, Lenkinski RE (2006) Sodium MRI of the human kidney at 3 Tesla. Magn Reson Med 56(6):1229–1234

    CAS  PubMed  Google Scholar 

  14. Haneder S, Konstandin S, Morelli JN, Nagel AM, Zoellner FG, Schad LR, Schoenberg SO, Michaely HJ (2011) Quantitative and qualitative (23)Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260(3):857–865

    PubMed  Google Scholar 

  15. Maril N, Margalit R, Rosen S, Heyman SN, Degani H (2006) Detection of evolving acute tubular necrosis with renal 23Na MRI: studies in rats. Kidney Int 69(4):765–768

    CAS  PubMed  Google Scholar 

  16. Zollner FG, Konstandin S, Lommen J, Budjan J, Schoenberg SO, Schad LR, Haneder S (2016) Quantitative sodium MRI of kidney. NMR Biomed 29(2):197–205

    PubMed  Google Scholar 

  17. Francis S, Buchanan CE, Prestwich B, Taal MW (2017) Sodium MRI: a new frontier in imaging in nephrology. Curr Opin Nephrol Hypertens 26(6):435–441

    CAS  PubMed  Google Scholar 

  18. Rudy Y (2008) Molecular basis of cardiac action potential repolarization. Ann N Y Acad Sci 1123:113–118

    CAS  PubMed  Google Scholar 

  19. Barclay JA, Hamley EJ (1960) Electrolyte content of rat heart atria and ventricles. Circ Res 8:1264–1267

    CAS  PubMed  Google Scholar 

  20. Constantinides CD, Kraitchman DL, O'Brien KO, Boada FE, Gillen J, Bottomley PA (2001) Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI. Magn Reson Med 46(6):1144–1151

    CAS  PubMed  Google Scholar 

  21. Rochitte CE, Kim RJ, Hillenbrand HB, Chen EL, Lima JA (2000) Microvascular integrity and the time course of myocardial sodium accumulation after acute infarction. Circ Res 87(8):648–655

    CAS  PubMed  Google Scholar 

  22. Sandstede JJ, Hillenbrand H, Beer M, Pabst T, Butter F, Machann W, Bauer W, Hahn D, Neubauer S (2004) Time course of 23Na signal intensity after myocardial infarction in humans. Magn Reson Med 52(3):545–551

    CAS  PubMed  Google Scholar 

  23. Jerecic R, Bock M, Nielles-Vallespin S, Wacker C, Bauer W, Schad LR (2004) ECG-gated 23Na-MRI of the human heart using a 3D-radial projection technique with ultra-short echo times. MAGMA 16(6):297–302

    CAS  PubMed  Google Scholar 

  24. Konstandin S, Schad LR (2013) Two-dimensional radial sodium heart MRI using variable-rate selective excitation and retrospective electrocardiogram gating with golden angle increments. Magn Reson Med 70(3):791–799

    PubMed  Google Scholar 

  25. Robson MD, Titus L, Neubauer S (2008) Cardiac sodium imaging with phased arrays at 3 Tesla using a 3D Ultra-short TE (UTE) approach. J Cardiovasc Magn Reson 10(Suppl 1):A109

    Google Scholar 

  26. Ouwerkerk R, Weiss RG, Bottomley PA (2005) Measuring human cardiac tissue sodium concentrations using surface coils, adiabatic excitation, and twisted projection imaging with minimal T2 losses. J Magn Reson Imaging 21(5):546–555

    PubMed  Google Scholar 

  27. Niendorf T, Schulz-Menger J, Paul K, Huelnhagen T, Ferrari VA, Hodge R (2017) High field cardiac magnetic resonance imaging: a case for ultrahigh field cardiac magnetic resonance. Circ Cardiovasc Imaging 10:6

    Google Scholar 

  28. Kalayciyan R, Wetterling F, Neudecker S, Haneder S, Gretz N, Schad LR (2013) Bilateral kidney sodium-MRI: enabling accurate quantification of renal sodium concentration through a two-element phased array system. J Magn Reson Imaging 38(3):564–572

    PubMed  Google Scholar 

  29. Liu H, Zhou D, Garcia ML, Kohler MG, Shen X, Williams DS, Klimas MT, Hargreaves RJ, Kaczorowski GJ (2015) Characteristic time courses of cortical and medullary sodium signals measured by noninvasive (23) Na-MRI in rat kidney induced by furosemide. J Magn Reson Imaging 41(6):1622–1628

    PubMed  Google Scholar 

  30. Qi H, Norlinger TS, Nielsen PM, Bertelsen LB, Mikkelsen E, Xu Y, Stodkilde Jorgensen H, Laustsen C (2016) Early diabetic kidney maintains the corticomedullary urea and sodium gradient. Physiol Rep 4:5

    Google Scholar 

  31. Jansen MA, Van Emous JG, Nederhoff MG, Van Echteld CJ (2004) Assessment of myocardial viability by intracellular 23Na magnetic resonance imaging. Circulation 110(22):3457–3464

    CAS  PubMed  Google Scholar 

  32. Weidensteiner C, Horn M, Fekete E, Neubauer S, von Kienlin M (2002) Imaging of intracellular sodium with shift reagent aided (23)Na CSI in isolated rat hearts. Magn Reson Med 48(1):89–96

    CAS  PubMed  Google Scholar 

  33. Aguor EN, van de Kolk CW, Arslan F, Nederhoff MG, Doevendans PA, Pasterkamp G, Strijkers GJ, van Echteld CJ (2013) 23Na chemical shift imaging and Gd enhancement of myocardial edema. Int J Cardiovasc Imaging 29(2):343–354

    PubMed  Google Scholar 

  34. Neuberger T, Greiser A, Nahrendorf M, Jakob PM, Faber C, Webb AG (2004) 23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging. MAGMA 17(3–6):196–200

    CAS  PubMed  Google Scholar 

  35. Graessl A, Ruehle A, Waiczies H, Resetar A, Hoffmann SH, Rieger J, Wetterling F, Winter L, Nagel AM, Niendorf T (2015) Sodium MRI of the human heart at 7.0 T: preliminary results. NMR Biomed 28(8):967–975

    CAS  PubMed  Google Scholar 

  36. Boehmert L, Kuehne A, Waiczies H, Wenz D, Eigentler TW, Funk S, von Knobelsdorff-Brenkenhoff F, Schulz-Menger J, Nagel AM, Seeliger E, Niendorf T (2019) Cardiorenal sodium MRI at 7.0 Tesla using a 4/4 channel (1) H/(23) Na radiofrequency antenna array. Magn Reson Med 82(6):2343–2356

    CAS  PubMed  Google Scholar 

  37. Maril N, Margalit R, Mispelter J, Degani H (2005) Sodium magnetic resonance imaging of diuresis: spatial and kinetic response. Magn Reson Med 53(3):545–552

    CAS  PubMed  Google Scholar 

  38. Wetterling F, Corteville DM, Kalayciyan R, Rennings A, Konstandin S, Nagel AM, Stark H, Schad LR (2012) Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer. Phys Med Biol 57(14):4555–4567

    PubMed  Google Scholar 

  39. Atthe BK, Babsky AM, Hopewell PN, Phillips CL, Molitoris BA, Bansal N (2009) Early monitoring of acute tubular necrosis in the rat kidney by 23Na-MRI. Am J Physiol Renal Physiol 297(5):F1288–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuehne A, Goluch S, Waxmann P, Seifert F, Ittermann B, Moser E, Laistler E (2015) Power balance and loss mechanism analysis in RF transmit coil arrays. Magn Reson Med 74(4):1165–1176

    PubMed  Google Scholar 

  41. Kumar A, Edelstein WA, Bottomley PA (2009) Noise figure limits for circular loop MR coils. Magn Reson Med 61(5):1201–1209

    PubMed  PubMed Central  Google Scholar 

  42. Kozlov M, Turner R (2009) Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J Magn Reson 200(1):147–152

    CAS  PubMed  Google Scholar 

  43. Cunningham CH, Pauly JM, Nayak KS (2006) Saturated double-angle method for rapid B1+ mapping. Magn Reson Med 55(6):1326–1333

    PubMed  Google Scholar 

  44. Insko EK, Bolinger L (1993) Mapping of the radiofrequency field. J Magn Reson Ser A 103(1):82–85

    CAS  Google Scholar 

  45. National Electrical Manufacturers Association (NEMA). Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. EMA Standards Publication MS 1-2008.

  46. Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38(5):852–857

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pohmann R, Speck O, Scheffler K (2015) Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn Reson Med. https://doi.org/10.1002/mrm.25677

    Article  PubMed  PubMed Central  Google Scholar 

  48. Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller OM, Hart HR, Hardy CJ, Odonnell M, Barber WD (1985) Comparison of linear and circular-polarization for magnetic-resonance imaging. J Magn Reson 64(2):255–270

    CAS  Google Scholar 

  49. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195

    PubMed  Google Scholar 

  50. Madelin G, Chang G, Otazo R, Jerschow A, Regatte RR (2012) Compressed sensing sodium MRI of cartilage at 7 T: preliminary study. J Magn Reson 214(1):360–365

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part (T. Niendorf, E. Seeliger) by the German Research Foundation (Gefoerdert durch die Deutsche Forschungsgemeinschaft (DFG), Projektnummer394046635, SFB 1365, RENOPROTECTION. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project number 394046635, SFB 1365, RENOPROTECTION).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: LB, HW, AK, CO, AP, TN, ES. Acquisition of data: LB, AP. M-CK, SW. Analysis and interpretation of data: LB, LS, AK. Drafting of manuscript: LB, TN. Critical revision: LB, HW, AK, CO, SW, LS, M-CK, AP, TN.

Corresponding author

Correspondence to Thoralf Niendorf.

Ethics declarations

Conflict of interest

Thoralf Niendorf is CEO of MRI.TOOLS GmbH, Berlin, Germany. Andre Kuehne and Helmar Waiczies are employees of MRI.TOOLS GmbH, Berlin, Germany.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boehmert, L., Waiczies, H., Kuehne, A. et al. Cardiorenal sodium MRI in small rodents using a quadrature birdcage volume resonator at 9.4 T. Magn Reson Mater Phy 33, 121–130 (2020). https://doi.org/10.1007/s10334-019-00810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-019-00810-x

Keywords

Navigation