Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Image registration in dynamic renal MRI—current status and prospects


Magnetic resonance imaging (MRI) modalities have achieved an increasingly important role in the clinical work-up of chronic kidney diseases (CKD). This comprises among others assessment of hemodynamic parameters by arterial spin labeling (ASL) or dynamic contrast-enhanced (DCE-) MRI. Especially in the latter, images or volumes of the kidney are acquired over time for up to several minutes. Therefore, they are hampered by motion, e.g., by pulsation, peristaltic, or breathing motion. This motion can hinder subsequent image analysis to estimate hemodynamic parameters like renal blood flow or glomerular filtration rate (GFR). To overcome motion artifacts in time-resolved renal MRI, a wide range of strategies have been proposed. Renal image registration approaches could be grouped into (1) image acquisition techniques, (2) post-processing methods, or (3) a combination of image acquisition and post-processing approaches. Despite decades of progress, the translation in clinical practice is still missing. The aim of the present article is to discuss the existing literature on renal image registration techniques and show today’s limitations of the proposed techniques that hinder clinical translation. This paper includes transformation, criterion function, and search types as traditional components and emerging registration technologies based on deep learning. The current trend points towards faster registrations and more accurate results. However, a standardized evaluation of image registration in renal MRI is still missing.

This is a preview of subscription content, log in to check access.


  1. 1.

    Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt KU, Eikefjord E, Garcia-Fernandez N, Golay X, Gordon I, Grenier N, Hockings PD, Jensen JD, Joles JA, Kalra PA, Kramer BK, Mark PB, Mendichovszky IA, Nikolic O, Odudu A, Ong ACM, Ortiz A, Pruijm M, Remuzzi G, Rorvik J, de Seigneux S, Simms RJ, Slatinska J, Summers P, Taal MW, Thoeny HC, Vallee JP, Wolf M, Caroli A, Sourbron S (2018) Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 33(suppl_2):ii4–ii14

  2. 2.

    Zöllner FG, Svarstad E, Munthe-Kaas AZ, Schad LR, Lundervold A, Rorvik J (2012) Assessment of kidney volumes from MRI: acquisition and segmentation techniques. AJR Am J Roentgenol 199(5):1060–1069

  3. 3.

    Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallee JP (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33(suppl_2):ii29–ii40

  4. 4.

    Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernandez-Seara MA (2018) Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 33(suppl_2):ii15–ii21

  5. 5.

    Jones RA, Votaw JR, Salman K, Sharma P, Lurie C, Kalb B, Martin DR (2011) Magnetic resonance imaging evaluation of renal structure and function related to disease: technical review of image acquisition, postprocessing, and mathematical modeling steps. J Magn Reson Imaging 33(6):1270–1283

  6. 6.

    Viergever MA, Maintz JBA, Klein S, Murphy K, Staring M, Pluim JPW (2016) A survey of medical image registration—under review. Med Image Anal 33:140–144

  7. 7.

    Brox I (2007) Motion correction of the kidneys in dynamic contrast enhanced MRI for quantification of renal structure and function. University of Bergen, Bergen

  8. 8.

    Robson PM, Madhuranthakam AJ, Smith MP, Sun MR, Dai W, Rofsky NM, Pedrosa I, Alsop DC (2016) Volumetric arterial spin-labeled perfusion imaging of the kidneys with a three-dimensional fast spin echo acquisition. Acad Radiol 23(2):144–154

  9. 9.

    Attenberger UI, Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2010) Retrospective respiratory triggering renal perfusion MRI. Acta Radiol 51(10):1163–1171

  10. 10.

    Eikefjord E, Andersen E, Hodneland E, Zöllner F, Lundervold A, Svarstad E, Rorvik J (2015) Use of 3D DCE-MRI for the estimation of renal perfusion and glomerular filtration rate: an intrasubject comparison of FLASH and KWIC with a comprehensive framework for evaluation. Am J Roentgenol 204(3):W273–W281

  11. 11.

    Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42(5):963–969

  12. 12.

    Lietzmann F, Zöllner FG, Michaely HJ, Schad LR (2010) Examination of self-navigating MR-sequences for perfusion imaging of the kidneys. Z Med Phys 20(2):124–133

  13. 13.

    Lietzmann F, Zöllner FG, Attenberger UI, Haneder S, Michaely HJ, Schad LR (2012) DCE-MRI of the human kidney using BLADE: a feasibility study in healthy volunteers. J Magn Reson Imaging 35(4):868–874

  14. 14.

    Riffel P, Zöllner FG, Budjan J, Grimm R, Block TK, Schoenberg SO, Hausmann D (2016) “One-stop shop”: free-breathing dynamic contrast-enhanced magnetic resonance imaging of the kidney using iterative reconstruction and continuous golden-angle radial sampling. Invest Radiol 51(11):714–719

  15. 15.

    Kurugol S, Afacan O, Stemmer A, Lee RS, Chow JS, Warfield SK (2019) Glomerular filtration rate estimation by motion-robust high spatiotemporal resolution DCE-MRI with radial VIBE and comparison with plasma clearance of 99mTc-DTPA. In: The proceedings of the international society of magnetic resonance in medicine, Montreal, Canada, p 846

  16. 16.

    Taso M, Guidon A, Litwiller DV, Alsop DC (2019) Free-breathing renal perfusion measurement with volumetric ASL using variable-density FSE and 4D Compressed-Sensing. In: The proceedings of the international society of magnetic resonance in medicine, Montreal, Canada, p 702

  17. 17.

    Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT–an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001

  18. 18.

    Hodneland E, Hanson EA, Lundervold A, Modersitzki J, Eikefjord E, Munthe-Kaas AZ (2014) Segmentation-driven image registration-application to 4D DCE-MRI recordings of the moving kidneys. IEEE T Image Process 23(5):2392–2404

  19. 19.

    Hodneland E, Lundervold A, Rorvik J, Munthe-Kaas AZ (2014) Normalized gradient fields for nonlinear motion correction of DCE-MRI time series. Comput Med Imaging Graph 38(3):202–210

  20. 20.

    Positano V, Bernardeschi I, Zampa V, Marinelli M, Landini L, Santarelli MF (2013) Automatic 2D registration of renal perfusion image sequences by mutual information and adaptive prediction. MAGMA 26(3):325–335

  21. 21.

    Zöllner FG, Sance R, Rogelj P, Ledesma-Carbayo MJ, Rorvik J, Santos A, Lundervold A (2009) Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput Med Imaging Graph 33(3):171–181

  22. 22.

    Sance R, Ledesma-Carbayo MJ, Lundervold A, Santos A (2007) Alignment of 3D DCE-MRI abdominal series for optimal quantification of kidney function. In: Proceedings of the 5th international symposium on image and signal processing and analysis (ISPA), pp 413–417

  23. 23.

    Anderlik A, Munthe-Kaas AZ, Oye OK, Eikefjord E, Rorvik J, Ulvang DM, Zöllner FG, Lundervold A (2009) Quantitative assessment of kidney function using dynamic contrast enhanced MRI—steps towards an integrated software prototype. In: Proceedings of 6th international symposium on image and signal processing and analysis (ISPA), pp 575–581

  24. 24.

    Fei B, Flask C, Wang H, Pi A, Wilson D, Shillingford J, Murcia N, Weimbs T, Duerk J (2005) Image segmentation, registration and visualization of serial mr images for therapeutic assessment of polycystic kidney disease in transgenic mice. Conf Proc IEEE Eng Med Biol Soc 1:467–469

  25. 25.

    Melbourne A, Hipwell J, Modat M, Mertzanidou T, Huisman H, Ourselin S, Hawkes DJ (2011) The effect of motion correction on pharmacokinetic parameter estimation in dynamic-contrast-enhanced MRI. Phys Med Biol 56(24):7693–7708

  26. 26.

    Rogelj P, Zöllner FG, Kovačič S, Lundervold A (2007) Motion correction of contrast-enhanced MRI time series of kidney. In: International Electrotechnical and Computer Science Conference, pp 191–194

  27. 27.

    Roche A, Malandain G, Pennec X, Ayache N (1998) The correlation ratio as a new similarity measure for multimodal image registration. Medical Image Computing and Computer-Assisted Intervention—MICCAI’98. Springer, Berlin, pp 1115–1124

  28. 28.

    Merrem AD, Zöllner FG, Reich M, Lundervold A, Rorvik J, Schad LR (2013) A variational approach to image registration in dynamic contrast-enhanced MRI of the human kidney. Magn Reson Imaging 31(5):771–777

  29. 29.

    Lausch A (2011) Nonrigid registration of dynamic contrast-enhanced mri data using motion informed intensity corrections. University of Toronto, Toronto

  30. 30.

    Zikic D, Sourbron S, Feng X, Michaely HJ, Khamene A, Navab N (2008) Automatic alignment of renal DCE-MRI image series for improvement of quantitative tracer kinetic studies. In: Proceedings of SPIE, p 691432

  31. 31.

    Sun Y, Jolly MP, Moura JMF (2004) Integrated registration of dynamic renal perfusion MR images. In: Proceedings international conference on image processing (ICIP)

  32. 32.

    Song T, Lee VS, Rusinek H, Sajous JB, Laine AF (2005) Registration and segmentation of dynamic three-dimensional MR renography based on Fourier representations and k-means clustering. In: The Proceedings of the International Society of Magnetic Resonance in Medicine, Miami, Florida, USA, p 18

  33. 33.

    Yim PJ, Marcos HB, McAuliffe M, McGarry D, Heaton I, Choyke PL (2001) Registration of time-series contrast enhanced magnetic resonance images for renography. In: Proceedings of the IEEE symposium on computer-based medical systems, pp 516–520

  34. 34.

    Wright KL, Chen Y, Saybasili H, Griswold MA, Seiberlich N, Gulani V (2014) Quantitative high-resolution renal perfusion imaging using 3-dimensional through-time radial generalized autocalibrating partially parallel acquisition. Invest Radiol 49(10):666–674

  35. 35.

    Buonaccorsi GA, O’Connor JP, Caunce A, Roberts C, Cheung S, Watson Y, Davies K, Hope L, Jackson A, Jayson GC, Parker GJ (2007) Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magn Reson Med 58(5):1010–1019

  36. 36.

    Buonaccorsi GA, Roberts C, Cheung S, Watson Y, Davies K, Jackson A, Jayson GC, Parker GJ (2005) Tracer kinetic model-driven registration for dynamic contrast enhanced MRI time series. Med Image Comput Comput Assist Interv 8(Pt 1):91–98

  37. 37.

    Buonaccorsi GA, Roberts C, Cheung S, Watson Y, O’Connor JP, Davies K, Jackson A, Jayson GC, Parker GJ (2006) Comparison of the performance of tracer kinetic model-driven registration for dynamic contrast enhanced MRI using different models of contrast enhancement. Acad Radiol 13(9):1112–1123

  38. 38.

    Nery F, Gordon I, Thomas DL (2018) Non-invasive renal perfusion imaging using arterial spin labeling MRI: challenges and opportunities. Diagnostics 8(1):2

  39. 39.

    Giele ELW, de Priester JA, Blom JA, den Boer JA, van Engelshoven JMA, Hasman A, Geerlings M (2001) Movement correction of the kidney in dynamic MRI scans using FFT phase difference movement detection. J Magn Reson Imaging 14(6):741–749

  40. 40.

    de Senneville BD, Mendichovszky IA, Roujol S, Gordon I, Moonen C, Grenier N (2008) Improvement of MRI-functional measurement with automatic movement correction in native and transplanted kidneys. J Magn Reson Imaging 28(4):970–978

  41. 41.

    Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Med 63(6):1627–1636

  42. 42.

    Siva S, Pham D, Gill S, Bressel M, Dang K, Devereux T, Kron T, Foroudi F (2013) An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy. Radiat Oncol 8:248

  43. 43.

    Hodneland E, Keilegavlen E, Hanson EA, Andersen E, Monssen JA, Rorvik J, Leh S, Marti HP, Lundervold A, Svarstad E, Nordbotten JM (2019) In vivo detection of chronic kidney disease using tissue deformation fields from dynamic MR imaging. IEEE T Bio-Med Eng 66(6):1779–1790

  44. 44.

    Spiegel M, Hahn DA, Daum V, Wasza J, Hornegger J (2009) Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration. Comput Med Imaging Graph 33(1):29–39

  45. 45.

    Ruthotto L, Hodneland E, Modersitzki J (2012) Registration of dynamic contrast enhanced MRI with local rigidity constraint. In: Dawant BM, Fitzpatrick JM, Rueckert D (eds) Biomedical image registration. WBIR 2012. Lecture notes in computer science. Springer, Berlin, pp 190–198

  46. 46.

    Schewzow K, Zöllner F, Oesingmann N, Schad L (2010) Image registration in ASL-perfusion imaging of kidney - impact on image quality. In: The Proceedings of the international society of magnetic resonance in medicine, Stockhom, Sweden, p 1780

  47. 47.

    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Sanchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

  48. 48.

    Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127

  49. 49.

    Mazurowski MA, Buda M, Saha A, Bashir MR (2019) Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 49(4):939–954

  50. 50.

    Kim J, Hong J, Park H (2018) Prospects of deep learning for medical imaging. Precis Future Med 2(2):37–52

  51. 51.

    Haskins G, Kruecker J, Kruger U, Xu S, Pinto PA, Wood BJ, Yan P (2019) Learning deep similarity metric for 3D MR-TRUS image registration. Int J Comput Assist Radiol Surg 14(3):417–425

  52. 52.

    Ker J, Wang L, Rao J, Lim T (2018) Deep learning applications in medical image analysis. IEEE Access 6:9375–9389

  53. 53.

    Lv J, Yang M, Zhang J, Wang X (2018) Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study. Br J Radiol 91(1083):20170788

  54. 54.

    Buerger C, Clough RE, King AP, Schaeffter T, Prieto C (2012) Nonrigid motion modeling of the liver from 3-D undersampled self-gated golden-radial phase encoded MRI. IEEE Trans Med Imaging 31(3):805–815

  55. 55.

    Kingma DP, Ba JL (2017) Adam: a method for stochastic optimization. 9:1–15, arXiv:1412.6980

  56. 56.

    Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX conference on operating systems design and implementation (OSDI’16). USENIX association, Berkeley, CA, USA, pp 265–283

  57. 57.

    Simonovsky M, Gutiérrez-Becker B, Mateus D, Navab N, Komodakis N (2016) A deep metric for multimodal registration. In, Cham, 2016. Medical image computing and computer-assisted intervention – MICCAI. Springer International Publishing, pp 10–18

  58. 58.

    Wu G, Kim M, Wang Q, Gao Y, Liao S, Shen D (2013) Unsupervised deep feature learning for deformable registration of MR brain images. Med Image Comput Comput Assist Interv 16(Pt 2):649–656

  59. 59.

    Cheng X, Zhang L, Zheng Y (2018) Deep similarity learning for multimodal medical images. Comput Methods Biomech Biomed Eng: Imaging Vis 6(3):248–252

  60. 60.

    Miao S, Wang ZJ, Liao R (2016) A CNN regression approach for real-time 2D/3D registration. IEEE Transa Med Imaging 35(5):1352–1363

  61. 61.

    Yang X, Kwitt R, Styner M, Niethammer M (2017) Quicksilver: fast predictive image registration—a deep learning approach. Neuroimage 158:378–396

  62. 62.

    Cao X, Yang J, Zhang J, Wang Q, Yap PT, Shen D (2018) deformable image registration using a cue-aware deep regression network. IEEE Trans Biomed Eng 65(9):1900–1911

  63. 63.

    Chollet F (2015) Keras. https://keras.io. Accessed 22nd May 2019

  64. 64.

    Heinrich MP, Jenkinson M, Bhushan M, Matin T, Gleeson FV, Brady SM, Schnabel JA (2012) MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med Image Anal 16(7):1423–1435

  65. 65.

    Lundervold AS, Roervik J, Lundervold A (2017) Fast semi-supervised segmentation of the kidneys in DCE-MRI using convolutional neural networks and transfer learning”. In: 2nd International Scientific Symposium, Functional Renal Imaging: Where Physiology, Nephrology, Radiology and Physics Meet, Berlin, Germany

  66. 66.

    Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Jianming L (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312

  67. 67.

    Wang Z, Yang J, Jin H, Shechtman E, Agarwala A, Brandt J, Huang TS (2015) DeepFont: identify your font from an image. Paper presented at the Proceedings of the 23rd ACM international conference on Multimedia, Brisbane, Australia

  68. 68.

    Wood E, Baltruaitis T, Morency L-P, Robinson P, Bulling A (2016) Learning an appearance-based gaze estimator from one million synthesised images. Paper presented at the Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, Charleston, South Carolina

  69. 69.

    Maier J, Sawall S, Knaup M, Kachelrieß M (2018) Deep scatter estimation (DSE): accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network. J Nondestr Eval 37(3):57

  70. 70.

    Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Paper presented at the Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, Montreal, Canada

  71. 71.

    Guibas JT, Virdi TS, Li PS (2017) Synthetic medical images from dual generative adversarial networks. arXiv e-prints

  72. 72.

    Zhu J, Park T, Isola P, Efros A (2017) A unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 2242–2251

  73. 73.

    Russ T, Goerttler S, Schnurr A-K et al (2019) Synthesis of CT images from digital body phantoms using CycleGAN. Int J CARS. https://doi.org/10.1007/s11548-019-02042-9

  74. 74.

    Tanner C, Ozdemir F, Profanter R, Vishnevsky V, Konukoglu E, Goksel O (2018) Generative adversarial networks for MR-CT deformable image registration. arXiv:1807.07349

  75. 75.

    Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV (2019) VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2019.2897538

  76. 76.

    Fan J, Cao X, Yap PT, Shen D (2019) BIRNet: brain image registration using dual-supervised fully convolutional networks. Med Image Anal 54:193–206

  77. 77.

    de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Isgum I (2019) A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal 52:128–143

  78. 78.

    Hu Y, Modat M, Gibson E, Li W, Ghavami N, Bonmati E, Wang G, Bandula S, Moore CM, Emberton M, Ourselin S, Noble JA, Barratt DC, Vercauteren T (2018) Weakly-supervised convolutional neural networks for multimodal image registration. Med Image Anal 49:1–13

  79. 79.

    Tokuda J, Mamata H, Gill RR, Hata N, Kikinis R, Padera RF Jr, Lenkinski RE, Sugarbaker DJ, Hatabu H (2011) Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 33(4):968–973

  80. 80.

    de Boer A, Leiner T, Vink EE, Blankestijn PJ, van den Berg CAT (2018) Modified dixon-based renal dynamic contrast-enhanced MRI facilitates automated registration and perfusion analysis. Magn Reson Med 80(1):66–76

  81. 81.

    Conlin CC, Zhang JL, Rousset F, Vachet C, Zhao Y, Morton KA, Carlston K, Gerig G, Lee VS (2016) Performance of an efficient image-registration algorithm in processing MR renography data. J Magn Reson Imaging 43(2):391–397

  82. 82.

    Li XL, Chen XJ, Yao JH, Zhang X, Yang F, Tian J (2012) Automatic renal cortex segmentation using implicit shape registration and novel multiple surfaces graph search. IEEE Trans Med Imaging 31(10):1849–1860

  83. 83.

    Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29

  84. 84.

    Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20(9):917–927

  85. 85.

    Gupta SN, Solaiyappan M, Beache GM, Arai AE, Foo TKF (2003) Fast method for correcting image misregistration due to organ motion in time-series MRI data. Magn Reson Med 49(3):506–514

  86. 86.

    Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I (2012) Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA 25(2):145–153

  87. 87.

    Golay X, Hendrikse J, Lim TCC (2004) Perfusion imaging using arterial spin labeling. Topics Magn Reson Image 15(1):10–27

  88. 88.

    Zimmer F, Zollner FG, Hoeger S, Klotz S, Tsagogiorgas C, Kramer BK, Schad LR (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8(1):e53849

  89. 89.

    Hernandez-Garcia L, Nielsen JF, Noll DC (2019) Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL. Magn Reson Med 81(2):1004–1015

  90. 90.

    Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116

  91. 91.

    Bones IK, Harteveld AA, Franklin SL, van Osch MJP, Hendrikse J, Moonen CTW, Bos C, van Stralen M (2019) Enabling free-breathing background suppressed renal pCASL using fat imaging and retrospective motion correction. Magn Reson Med 82(1):276–288

  92. 92.

    Cutajar M, Thomas DL, Hales PW, Banks T, Clark CA, Gordon I (2014) Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. Eur Radiol 24(6):1300–1308

  93. 93.

    Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205

  94. 94.

    Shirvani S, Tokarczuk P, Statton B, Quinlan M, Berry A, Tomlinson J, Weale P, Kuhn B, O’Regan DP (2019) Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. Eur Radiol 29(1):232–240

  95. 95.

    Wu WC, Su MY, Chang CC, Tseng WY, Liu KL (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261(3):845–853

  96. 96.

    Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41

  97. 97.

    Mora-Gutierrez JM, Garcia-Fernandez N, Slon Roblero MF, Paramo JA, Escalada FJ, Wang DJ, Benito A, Fernandez-Seara MA (2017) Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging 46(6):1810–1817

  98. 98.

    Hammon M, Janka R, Siegl C, Seuss H, Grosso R, Martirosian P, Schmieder RE, Uder M, Kistner I (2016) Reproducibility of kidney perfusion measurements with arterial spin labeling at 1.5 tesla MRI combined with semiautomatic segmentation for differential cortical and medullary assessment. Medicine (Baltimore) 95(11):e3083

  99. 99.

    Dong J, Yang L, Su T, Yang X, Chen B, Zhang J, Wang X, Jiang X (2013) Quantitative assessment of acute kidney injury by noninvasive arterial spin labeling perfusion MRI: a pilot study. Sci China Life Sci 56(8):745–750

  100. 100.

    Wang J, Zhang Y, Yang X, Wang X, Zhang J, Fang J, Jiang X (2012) Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI. Acad Radiol 19(10):1194–1200

  101. 101.

    Artz NS, Sadowski EA, Wentland AL, Djamali A, Grist TM, Seo S, Fain SB (2011) Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging 33(6):1414–1421

  102. 102.

    Hanson E, Eikefjord E, Rorvik J, Andersen E, Lundervold A, Hodneland E (2017) Workflow sensitivity of post-processing methods in renal DCE-MRI. Magn Reson Imaging 42:60–68

  103. 103.

    Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790

  104. 104.

    Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2019) Elastix parameter file database. http://elastix.bigr.nl/wiki/index.php/Parameter_file_database. Accessed 22nd May 2019

  105. 105.

    Luypaert R, Ingrisch M, Sourbron S, de Mey J (2012) The Akaike information criterion in DCE-MRI: does it improve the haemodynamic parameter estimates? Phys Med Biol 57(11):3609–3628

  106. 106.

    Basak S, Buckley DL, Chrysochou C, Banerji A, Vassallo D, Odudu A, Kalra PA, Sourbron SP (2019) Analytical validation of single-kidney glomerular filtration rate and split renal function as measured with magnetic resonance renography. Magn Reson Imaging 59:53–60

  107. 107.

    Haber E, Modersitzki J (2006) Intensity gradient based registration and fusion of multi-modal images. Medical image computing and computer-assisted intervention—MICCAI 2006. Springer, Berlin, pp 726–733

Download references


This article is based on work from COST Action Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease (Grant CA16103) (PARENCHIMA), funded by COST (European Cooperation in Science and Technology). http://www.cost.eu. For additional information, please visit PARENCHIMA project website: http://www.renalmri.org.

This research project is partly supported of the Research Campus M2OLIE funded by the German Federal Ministry of Education and Research (BMBF) within the Framework “Forschungscampus: public–private partnership for Innovations” under the funding codes 13GW0092D and 13GW0388A.

The European Commission funding of the InnoRenew CoE project (Grant Agreement #739574) under the Horizon 2020 Widespread-Teaming program and the Republic of Slovenia (Investment funding of the Republic of Slovenia and the European Union of the European Regional Development Fund) is gratefully acknowledged.

Author information

GK: acquisition of data, analysis and interpretation of data, and critical revision. PR: acquisition of data, analysis and interpretation of data, drafting of manuscript, and critical revision. MK: acquisition of data, analysis and interpretation of data, drafting of manuscript, and critical revision. AM: acquisition of data, analysis and interpretation of data, drafting of manuscript, and critical revision. AŠT: analysis and interpretation of data, drafting of manuscript, and critical revision. FGZ: study conception and design, acquisition of data, analysis and interpretation of data, and drafting of manuscript.

Correspondence to Frank G. Zöllner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zöllner, F.G., Šerifović-Trbalić, A., Kabelitz, G. et al. Image registration in dynamic renal MRI—current status and prospects. Magn Reson Mater Phy 33, 33–48 (2020). https://doi.org/10.1007/s10334-019-00782-y

Download citation


  • Kidney disease
  • Image registration
  • Dynamic MRI
  • ASL