Advertisement

Optimized partial-coverage functional analysis pipeline (OPFAP): a semi-automated pipeline for skull stripping and co-registration of partial-coverage, ultra-high-field functional images

  • Peter E. YooEmail author
  • Jon O. Cleary
  • Scott C. Kolbe
  • Roger J. Ordidge
  • Terence J. O’Brien
  • Nicholas L. Opie
  • Sam E. John
  • Thomas J. Oxley
  • Bradford A. Moffat
Research Article
  • 126 Downloads

Abstract

Objective

Ultra-high-field functional MRI (UHF-fMRI) allows for higher spatiotemporal resolution imaging. However, higher-resolution imaging entails coverage limitations. Processing partial-coverage images using standard pipelines leads to sub-optimal results. We aimed to develop a simple, semi-automated pipeline for processing partial-coverage UHF-fMRI data using widely used image processing algorithms.

Materials and methods

We developed automated pipelines for optimized skull stripping and co-registration of partial-coverage UHF functional images, using built-in functions of the Centre for Functional Magnetic Resonance Imaging of the Brain's (FMRIB’s) Software library (FSL) and advanced normalization tools. We incorporated the pipelines into the FSL’s functional analysis pipeline and provide a semi-automated optimized partial-coverage functional analysis pipeline (OPFAP).

Results

Compared to the standard pipeline, the OPFAP yielded images with 15 and 30% greater volume of non-zero voxels after skull stripping the functional and anatomical images, respectively (all p = 0.0004), which reflected the conservation of cortical voxels lost when the standard pipeline was used. The OPFAP yielded the greatest Dice and Jaccard coefficients (87 and 80%, respectively; all p < 0.0001) between the co-registered participant gyri maps and the template gyri maps, demonstrating the goodness of the co-registration results. Furthermore, the greatest volume of group-level activation in the most number of functionally relevant regions was observed when the OPFAP was used. Importantly, group-level activations were not observed when using the standard pipeline.

Conclusion

These results suggest that the OPFAP should be used for processing partial-coverage UHF-fMRI data for detecting high-resolution macroscopic blood oxygenation level-dependent activations.

Keywords

7 T UHF Partial coverage Targeted fMRI Co-registration Segmentation FSL ANTs 

Notes

Acknowledgements

This work was supported by US Defense Advanced Research Projects Agency (DARPA) Microsystems Technology Office contract N66001-12-1-4045; Office
of Naval Research (ONR) Global N62909-14-1-N020; National Health and Medical Research Council of Australia (NHMRC) project grant APP1062532 and development grant APP1075117; Defence Health Foundation, Australia (booster grant); and Defence Science Institute, Australia, grant. Author P.E.Y. acknowledges the Faculty of Medicine, University of Melbourne for the Leslie Eric Paddle Scholarship in Neurology and the Melbourne Neuroscience Institute for the Strategic Australian Postgraduate Award. Author J.O.C was funded by the University of Melbourne McKenzie Fellowship. Author B.A.M acknowledges the Australian National Imaging Facility (NIF) fellowship. We acknowledge the facilities and the scientific and technical assistance of the NIF at the Melbourne Brain Centre Imaging Unit.

Author contributions

P.E.Y conceived and designed the study, acquired the data, and performed the analyses. P.E.Y, B.A.M, J.O.C, and S.C.K interpreted the data. P.E.Y drafted the manuscript. J.O.C, S.C.K, N.L.O, R.J.O, T.J.O, S.E.J, T.J.O, and B.A.M provided critical revision of the manuscript. T.J.O and B.A.M are joint last authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10334_2018_690_MOESM1_ESM.docx (14.7 mb)
Supplementary material 1 (DOCX 15,004 kb)

References

  1. 1.
    Yacoub E et al (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45(4):588–594CrossRefPubMedGoogle Scholar
  2. 2.
    van der Zwaag W et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47:1425–1434CrossRefPubMedGoogle Scholar
  3. 3.
    Duong TQ et al (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49(6):1019–1027CrossRefPubMedGoogle Scholar
  4. 4.
    Gati JS et al (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38(2):296–302CrossRefPubMedGoogle Scholar
  5. 5.
    Geissler A et al (2007) Contrast-to-noise ratio (CNR) as a quality parameter in fMRI. J Magn Reson Imaging 25(6):1263–1270CrossRefPubMedGoogle Scholar
  6. 6.
    Okada T et al (2005) Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: measured using BOLD contrast in the primary visual area. Acad Radiol 12(2):142–147CrossRefPubMedGoogle Scholar
  7. 7.
    De Martino F et al (2011) Whole brain high-resolution functional imaging at ultra high magnetic fields: an application to the analysis of resting state networks. Neuroimage 57(3):1031–1044CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vu AT et al (2016) Tradeoffs in pushing the spatial resolution of fMRI for the 7 T human connectome project. Neuroimage 154:23–32CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Triantafyllou C et al (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250CrossRefPubMedGoogle Scholar
  10. 10.
    Yoo PE et al (2017) 7 T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution. Neuroimage 164:214–229CrossRefPubMedGoogle Scholar
  11. 11.
    Polimeni JR et al (2010) Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52(4):1334–1346CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huber L et al (2015) Cortical lamina-dependent blood volume changes in human brain at 7 T. Neuroimage 107:23–33CrossRefPubMedGoogle Scholar
  13. 13.
    Siero JC et al (2015) Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla. Magn Reson Med 73(6):2283–2295CrossRefPubMedGoogle Scholar
  14. 14.
    Siero JC et al (2014) BOLD matches neuronal activity at the mm scale: a combined 7 T fMRI and ECoG study in human sensorimotor cortex. Neuroimage 101C:177–184CrossRefGoogle Scholar
  15. 15.
    Yacoub E, Hu X (2001) Detection of the early decrease in fMRI signal in the motor area. Magn Reson Med 45(2):184–190CrossRefPubMedGoogle Scholar
  16. 16.
    Yacoub E et al (2001) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14(7–8):408–412CrossRefPubMedGoogle Scholar
  17. 17.
    Yacoub E, Harel N, Ugurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA 105(30):10607–10612CrossRefPubMedGoogle Scholar
  18. 18.
    Yoo PE et al (2018) Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals. Hum Brain Mapp 39(6):2635–2650CrossRefPubMedGoogle Scholar
  19. 19.
    Polimeni JR et al (2017) Analysis strategies for high-resolution UHF-fMRI data. Neuroimage 168:296–320CrossRefPubMedGoogle Scholar
  20. 20.
    Jenkinson M et al (2012) FSL. Neuroimage 62(2):782–790CrossRefPubMedGoogle Scholar
  21. 21.
    Avants BB et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Marques JP et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281CrossRefPubMedGoogle Scholar
  23. 23.
    Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2):870–888CrossRefPubMedGoogle Scholar
  24. 24.
    Smith SM et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMedGoogle Scholar
  25. 25.
    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155CrossRefPubMedGoogle Scholar
  26. 26.
    Tustison NJ et al (2014) Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99:166–179CrossRefPubMedGoogle Scholar
  27. 27.
    Avants BB et al (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Klein A et al (2010) Evaluation of volume-based and surface-based brain image registration methods. Neuroimage 51(1):214–220CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Avants BB et al (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41CrossRefPubMedGoogle Scholar
  30. 30.
    Wang XJ (2008) Decision making in recurrent neuronal circuits. Neuron 60(2):215–234CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Connolly JD, Andersen RA, Goodale MA (2003) FMRI evidence for a ‘parietal reach region’ in the human brain. Exp Brain Res 153(2):140–145CrossRefPubMedGoogle Scholar
  32. 32.
    Medendorp WP et al (2005) Integration of target and effector information in human posterior parietal cortex for the planning of action. J Neurophysiol 93(2):954–962CrossRefPubMedGoogle Scholar
  33. 33.
    Bremmer F et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296CrossRefPubMedGoogle Scholar
  34. 34.
    Cunnington R et al (2006) The selection of intended actions and the observation of others’ actions: a time-resolved fMRI study. Neuroimage 29(4):1294–1302CrossRefPubMedGoogle Scholar
  35. 35.
    Nachev P et al (2005) Volition and conflict in human medial frontal cortex. Curr Biol 15(2):122–128CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sumner P et al (2007) Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54(5):697–711CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Binkofski F et al (1999) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128(1–2):210–213CrossRefPubMedGoogle Scholar
  38. 38.
    Deecke L (1987) Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp 132:231–250PubMedGoogle Scholar
  39. 39.
    Cunnington R, Bradshaw JL, Iansek R (1996) The role of the supplementary motor area in the control of voluntary movement. Hum Mov Sci 15:627–647CrossRefGoogle Scholar
  40. 40.
    Cunnington R et al (2002) The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Neuroimage 15(2):373–385CrossRefPubMedGoogle Scholar
  41. 41.
    Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11(6):663–672CrossRefPubMedGoogle Scholar
  42. 42.
    Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRefGoogle Scholar
  43. 43.
    Wright GA, Hu BS, Macovski A (1991) 1991 I.I. Rabi Award. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging 1(3):275–283CrossRefPubMedGoogle Scholar
  44. 44.
    Triantafyllou C et al (2016) Coil-to-coil physiological noise correlations and their impact on functional MRI time-series signal-to-noise ratio. Magn Reson Med 76(6):1708–1719CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Felician O et al (2004) The role of human left superior parietal lobule in body part localization. Ann Neurol 55(5):749–751CrossRefPubMedGoogle Scholar
  46. 46.
    Gerstmann J (1942) Problem of imperception of disease and of impaired body territories with organic lesions. Arch Neurol Psychiatr 48:890–913CrossRefGoogle Scholar
  47. 47.
    Guariglia C et al (2002) Is autotopoagnosia real? EC says yes. Neuropsychologia 40(10):1744–1749CrossRefPubMedGoogle Scholar
  48. 48.
    Felician O et al (2003) Pointing to body parts: a double dissociation study. Neuropsychologia 41(10):1307–1316CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2018

Authors and Affiliations

  • Peter E. Yoo
    • 1
    • 3
    Email author
  • Jon O. Cleary
    • 1
  • Scott C. Kolbe
    • 1
    • 5
  • Roger J. Ordidge
    • 1
  • Terence J. O’Brien
    • 6
  • Nicholas L. Opie
    • 2
    • 3
    • 4
  • Sam E. John
    • 2
    • 3
    • 4
    • 5
  • Thomas J. Oxley
    • 3
    • 4
    • 5
    • 6
  • Bradford A. Moffat
    • 1
  1. 1.Department of Medicine and Radiology, Melbourne Medical SchoolThe University of MelbourneParkvilleAustralia
  2. 2.Department of Biomedical and Electronic EngineeringThe University of MelbourneMelbourneAustralia
  3. 3.Vascular Bionics Laboratory, Department of Medicine, Melbourne Brain CentreThe University of MelbourneMelbourneAustralia
  4. 4.Center for Neural EngineeringThe University of MelbourneMelbourneAustralia
  5. 5.The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
  6. 6.Departments of Medicine and NeurologyMelbourne Brain Centre at The Royal Melbourne Hospital, The University of MelbourneMelbourneAustralia

Personalised recommendations