2D and 3D texture analysis to differentiate brain metastases on MR images: proceed with caution

  • Monika Béresová
  • Andrés Larroza
  • Estanislao Arana
  • József Varga
  • László Balkay
  • David Moratal
Research Article



To find structural differences between brain metastases of lung and breast cancer, computing their heterogeneity parameters by means of both 2D and 3D texture analysis (TA).

Materials and methods

Patients with 58 brain metastases from breast (26) and lung cancer (32) were examined by MR imaging. Brain lesions were manually delineated by 2D ROIs on the slices of contrast-enhanced T1-weighted (CET1) images, and local binary patterns (LBP) maps were created from each region. Histogram-based (minimum, maximum, mean, standard deviation, and variance), and co-occurrence matrix-based (contrast, correlation, energy, entropy, and homogeneity) 2D, weighted average of the 2D slices, and true 3D TA were obtained on the CET1 images and LBP maps.


For LBP maps and 2D TA contrast, correlation, energy, and homogeneity were identified as statistically different heterogeneity parameters (SDHPs) between lung and breast metastasis. The weighted 3D TA identified entropy as an additional SDHP. Only two texture indexes (TI) were significantly different with true 3D TA: entropy and energy. All these TIs discriminated between the two tumor types significantly by ROC analysis. For the CET1 images there was no SDHP at all by 3D TA.


Our results indicate that the used textural analysis methods may help with discriminating between brain metastases of different primary tumors.


Computer-assisted Image processing Texture analysis Magnetic resonance imaging Brain neoplasms Metastasis Breast cancer Lung cancer 



This work was supported in part by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds under Grant BFU2015-64380-C2-2-R, by the “Richter Gedeon Talentum Alapítvány” and by the Campus Hungary Mobility Program. Andrés Larroza was funded by the Spanish Ministerio de Educación, Cultura y Deporte (MECD) under Grant FPU12/01140. The authors also thank to the continuous help of Dr. Joaquin Gavila from Fundación IVO.

Authors contribution

Protocol/project development: David Moratal, Estanislao Arana, Monika Béresová. Data collection or management: David Moratal, Estanislao Arana, László Balkay. Andrés Larroza, Monika Béresová. Data analysis: David Moratal, Estanislao Arana, Balkay László, József Varga, Monika Béresová.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All exams came from individuals who gave informed consent at admission for research and follow-up, in accordance with Institutional Board Review (IBR) approval.


  1. 1.
    Nayak L, Quant Lee E, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54CrossRefPubMedGoogle Scholar
  2. 2.
    Brastianos HC, Cahill DP, Brastianos PK (2015) Systemic therapy of brain metastases. Curr Neurol Neurosci Rep 15:518CrossRefPubMedGoogle Scholar
  3. 3.
    Lee EK, Lee EJ, Kim MS, Kim MS, Park H-J, Park NH, Park S, Lee YS (2012) Intracranial metastases: spectrum of MR imaging findings. Acta Radiol 53(10):1173–1185CrossRefPubMedGoogle Scholar
  4. 4.
    Kumar V, Abbas AK, Aster JC (2014) Robbins and cotran pathologic basis of disease, 9th edn. Elsevier, PhiladelphiaGoogle Scholar
  5. 5.
    Bekaert L, Emery E, Levallet G, Lechapt-Zalcman E (2017) Histopathologic diagnosis of brain metastases: current trends in management and future considerations. Brain Tumor Pathol 34(1):8–19CrossRefPubMedGoogle Scholar
  6. 6.
    Fink KR, Fink JR (2013) Imaging of brain metastases. Surg Neurol Int 4(Suppl 4):S209–S219CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Balériaux D, Colosimo C, Ruscalleda J et al (2002) Diagnostic neuroradiology magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine. Neuroradiol 44(3):191–203CrossRefGoogle Scholar
  8. 8.
    Yuh WTC, Fisher DJ, Runge VM, Atlas SW, Harms SE, Maravilla KR, Mayr NA, Mollman JE, Price AC (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. Am J Neuroradiol 15(6):1037–1051PubMedGoogle Scholar
  9. 9.
    Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805(1):105–117PubMedGoogle Scholar
  10. 10.
    Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334CrossRefPubMedGoogle Scholar
  11. 11.
    Lerski RA, Smith MJ, Morley P, Barnett E, Mills PR, Watkinson G, MacSween RNM (1981) Discriminant analysis of ultrasonic texture data in diffuse alcoholic liver disease: 1 fatty liver and cirrhosis. Ultrason Imaging 3(2):164–172PubMedGoogle Scholar
  12. 12.
    Haralick RM (1979) Statistical and structural approach to textures. Proc IEEE 67(5):786–804CrossRefGoogle Scholar
  13. 13.
    Ng TSC, Bading JR, Park R, Sohi H, Procissi D, Colcher D, Conti PS, Cherry SR, Raubitschek AA, Jacobs RE (2012) Quantitative, simultaneous PET/MRI for intratumoral imaging with an MRI-compatible PET scanner. J Nucl Med 53(7):1102–1109CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Asselin M-C, O’connor JPB, Boellaard R, Thacker NA, Jackson A (2012) Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer 48(4):447–455CrossRefPubMedGoogle Scholar
  15. 15.
    Larroza A, Moratal D, Paredes-Sánchez A, Soria-Olivas E, Chust ML, Arribas LA, Arana E (2015) Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J Magn Reson Imaging 42(5):1362–1368CrossRefPubMedGoogle Scholar
  16. 16.
    Oppedal K, Eftestøl T, Engan K, Beyer MK, Aarsland D (2015) Classifying dementia using local binary patterns from different regions in magnetic resonance images. Int J Biomed Imag. doi: 10.1155/2015/572567 Google Scholar
  17. 17.
    Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125CrossRefPubMedGoogle Scholar
  18. 18.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefGoogle Scholar
  19. 19.
    Guo ZH, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43(3):706–719CrossRefGoogle Scholar
  20. 20.
    Mouthuy N, Cosnard G, Abarca-Quinones J, Michoux N (2012) Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol 39(5):301–307CrossRefPubMedGoogle Scholar
  21. 21.
    Chernov MF, Hayashi M, Izawa M, Ono Y, Hori T (2006) Proton magnetic resonance spectroscopy (MRS) of metastatic brain tumors: variations of metabolic profile. Int J Clin Oncol 11(5):375–384CrossRefPubMedGoogle Scholar
  22. 22.
    Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I (2015) 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One. doi: 10.1371/journal.pone.0145063 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Mahmoud-Ghoneim D, Alkaabi MK, De Certaines JD, Goettsche F-M (2008) The impact of image dynamic range on texture classification of brain white matter. BMC Med Imaging 8:18CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fetit AE, Novak J, Peet AC, Arvanitis TN (2015) Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed 28(9):1174–1184CrossRefPubMedGoogle Scholar
  25. 25.
    Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Müller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18(1):176–196CrossRefPubMedGoogle Scholar
  26. 26.
    Suoranta S, Holli-Helenius K, Koskenkorva P, Niskanen E, Könönen M, Äikiä M, Eskola H, Kälviäinen R, Vanninen R (2013) 3D Texture analysis reveals imperceptible MRI textural alterations in the thalamus and putamen in progressive myoclonic epilepsy type 1, EPM1. PLoS One. doi: 10.1371/journal.pone.0069905 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Allin Christe S, Vasantha Kumari B, Kandaswamy A (2012) Experimental study for 3D statistical property based intracranial brain tumor classification. J Sci Ind Res 71(1):36–44Google Scholar
  28. 28.
    Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385CrossRefPubMedGoogle Scholar
  29. 29.
    Li Z, Mao Y, Li H, Yu G, Wan H, Li B (2016) Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med 76(5):1410–1419CrossRefPubMedGoogle Scholar
  30. 30.
    Ben Sassi O, Sellami L, Ben Slima M, Chtourou K, Ben Hamida A (2013) Improved spatial gray level dependence matrices for texture analysis. Int J Comput Sci Inf Technol 4(6):209Google Scholar
  31. 31.
    Carl P, Daniel L (2008) Matlab function—cooc3d.m, available at
  32. 32.
    Ganeshan B, Miles KA, Young RC, Chatwin CR (2007) Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol 62(8):761–768CrossRefPubMedGoogle Scholar
  33. 33.
    Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, Zheng J, Goldman D, Moskowitz C, Fine SW, Reuter VE, Eastham J, Sala E, Vargas HA (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25(10):2840–2850CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Molina D, Pérez-Beteta J, Martínez-González A, Martino J, Velásquez C, Arana E, Pérez-García VM (2016) Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 78:49–57CrossRefPubMedGoogle Scholar
  35. 35.
    Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42(11):6725–6735CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sikio M, Holli-Helenius KK, Ryymin P, Dastida P, Eskola H, Harrison L (2015) The effect of region of interest size on textural parameters: 9th International Symposium on Image and Signal Processing and Analysis (2015) IEEE, pp:149–153Google Scholar
  37. 37.
    Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55(1):37–42CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2017

Authors and Affiliations

  1. 1.Division of Radiology, Department of Medical Imaging, Faculty of MedicineUniversity of DebrecenDebrecenHungary
  2. 2.Department of MedicineUniversitat de ValènciaValenciaSpain
  3. 3.Department of RadiologyFundación Instituto Valenciano de OncologíaValenciaSpain
  4. 4.Division of Nuclear Medicine, Department of Medical Imaging, Faculty of MedicineUniversity of DebrecenDebrecenHungary
  5. 5.Center for Biomaterials and Tissue EngineeringUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations