Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water–fat MRI

  • Stefan Ruschke
  • Amber Pokorney
  • Thomas Baum
  • Holger Eggers
  • Jeffrey H. Miller
  • Houchun H. Hu
  • Dimitrios C. Karampinos
Research Article



To investigate the feasibility of employing a 3D time-interleaved multi-echo gradient-echo (TIMGRE) sequence to measure the proton density fat fraction (PDFF) in the vertebral bone marrow (VBM) of children and to examine cross-sectional changes with age and intra-individual variations from the lumbar to the cervical region in the first two decades of life.

Materials and methods

Quantitative water–fat imaging of the spine was performed in 93 patients (49 girls; 44 boys; age median 4.5 years; range 0.1–17.6 years). For data acquisition, a six-echo 3D TIMGRE sequence was used with phase correction and complex-based water–fat separation. Additionally, single-voxel MR spectroscopy (MRS) was performed in the L4 vertebrae of 37 patients. VBM was manually segmented in the midsagittal slice of each vertebra. Univariable and multivariable linear regression models were calculated between averaged lumbar, thoracic and cervical bone marrow PDFF and age with adjustments for sex, height, weight, and body mass index percentile.


Measured VBM PDFF correlated strongly between imaging and MRS (R 2 = 0.92, slope = 0.94, intercept = −0.72%). Lumbar, thoracic and cervical VBM PDFF correlated significantly (all p < 0.001) with the natural logarithm of age. Differences between female and male patients were not significant (p > 0.05).


VBM development in children showed a sex-independent cross-sectional increase of PDFF correlating with the natural logarithm of age and an intra-individual decrease of PDFF from the lumbar to the cervical region in all age groups. The present results demonstrate the feasibility of using a 3D TIMGRE sequence for PDFF assessment in VBM of children.


Bone marrow Child Magnetic resonance imaging Proton density fat fraction Water–fat imaging Chemical shift-encoding based imaging 



We would like to thank librarian Kathy Zeblisky from Phoenix Children’s Hospital for reference assistance.

Grant support

Stefan Ruschke was supported by the German Academic Exchange Service (DAAD) through the “Kurzstipendien für Doktorandinnen und Doktoranden” program. This work was supported by grant support from Philips Healthcare (to Dimitrios C. Karampinos). Thomas Baum received grant support from the Technical University of Munich, Faculty of Medicine (KKF H01).

Compliance with ethical standards

Conflict of interest

Holger Eggers is an employee of Philips Healthcare. Dimitrios Karampinos receives grant support from Philips Healthcare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Tavassoli M, Crosby WH (1970) Bone marrow histogenesis: a comparison of fatty and red marrow. Science 169:291–293CrossRefPubMedGoogle Scholar
  2. 2.
    Kricun ME (1985) Red–yellow marrow conversion: its effect on the location of some solitary bone lesions. Skelet Radiol 14:10–19CrossRefGoogle Scholar
  3. 3.
    Babyn PS, Ranson M, McCarville ME (1998) Normal bone marrow: signal characteristics and fatty conversion. Magn Reson Imaging Clin N Am 6:473–495PubMedGoogle Scholar
  4. 4.
    Tavassoli M (1976) Marrow adipose cells. Histochemical identification of labile and stable components. Arch Pathol Lab Med 100:16–18PubMedGoogle Scholar
  5. 5.
    Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, Wu B, Ding S-Y, Bredella MA, Fazeli PK, Khoury B, Jepsen KJ, Pilch PF, Klibanski A, Rosen CJ, MacDougald OA (2015) Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun 6:7808CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Scheller EL, Rosen CJ (2014) What’s the matter with MAT? marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311:14–30CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pichardo JC, Milner RJ, Bolch WE (2011) MRI measurement of bone marrow cellularity for radiation dosimetry. J Nucl Med 52:1482–1489CrossRefPubMedGoogle Scholar
  8. 8.
    MacEwan IJ, Glembotski NE, D’Lima D, Bae W, Masuda K, Rashidi HH, Mell LK, Bydder M (2014) Proton density water fraction as a biomarker of bone marrow cellularity: validation in ex vivo spine specimens. Magn Reson Imaging 32:1097–1101CrossRefPubMedGoogle Scholar
  9. 9.
    Arentsen L, Yagi M, Takahashi Y, Bolan PJ, White M, Yee D, Hui S (2015) Validation of marrow fat assessment using noninvasive imaging with histologic examination of human bone samples. Bone 72:118–122CrossRefPubMedGoogle Scholar
  10. 10.
    Schellinger D, Lin CS, Fertikh D, Lee JS, Lauerman WC, Henderson F, Davis B (2000) Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy-initial experience. Radiology 215:910–916CrossRefPubMedGoogle Scholar
  11. 11.
    Liney GP, Bernard CP, Manton DJ, Turnbull LW, Langton CM (2007) Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0T. J Magn Reson Imaging 26:787–793CrossRefPubMedGoogle Scholar
  12. 12.
    Roldan-Valadez E, Piña-Jimenez C, Favila R, Rios C (2013) Gender and age groups interactions in the quantification of bone marrow fat content in lumbar spine using 3T MR spectroscopy: a multivariate analysis of covariance (Mancova). Eur J Radiol 82:e697–e702CrossRefPubMedGoogle Scholar
  13. 13.
    Martin J, Nicholson G, Cowin G, Ilente C, Wong W, Kennedy D (2014) Rapid determination of vertebral fat fraction over a large range of vertebral bodies. J Med Imaging Radiat Oncol 58:155–163CrossRefPubMedGoogle Scholar
  14. 14.
    Bredella MA, Daley SM, Kalra MK, Brown JK, Miller KK, Torriani M (2015) Marrow adipose tissue quantification of the lumbar spine by using dual-energy CT and single-voxel 1H MR spectroscopy: a feasibility study. Radiology 277:230–235CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Barber QM, Yahya A (2015) Aspects of spinal bone marrow fat to water quantification with magnetic resonance spectroscopy at 3T. Biomed Phys Eng Express 1:047001CrossRefGoogle Scholar
  16. 16.
    Dieckmeyer M, Ruschke S, Cordes C, Yap SP, Kooijman H, Hauner H, Rummeny EJ, Bauer JS, Baum T, Karampinos DC (2015) The need for T2 correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence. NMR Biomed 28:432–439CrossRefPubMedGoogle Scholar
  17. 17.
    Baum T, Yap SP, Dieckmeyer M, Ruschke S, Eggers H, Kooijman H, Rummeny EJ, Bauer JS, Karampinos DC (2015) Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. J Magn Reson Imaging 42:1018–1023CrossRefPubMedGoogle Scholar
  18. 18.
    Kühn J-P, Hernando D, Meffert PJ, Reeder S, Hosten N, Laqua R, Steveling A, Ender S, Schröder H, Pillich D-T (2013) Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol 23:3432–3439CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Karampinos DC, Ruschke S, Dieckmeyer M, Eggers H, Kooijman H, Rummeny EJ, Bauer JS, Baum T (2015) Modeling of T2* decay in vertebral bone marrow fat quantification. NMR Biomed 28:1535–1542CrossRefPubMedGoogle Scholar
  20. 20.
    Schellinger D, Lin CS, Hatipoglu HG, Fertikh D (2001) Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol 22:1627Google Scholar
  21. 21.
    Griffith JF, Yeung DKW, Antonio GE, Wong SYS, Kwok TCY, Woo J, Leung PC (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838CrossRefPubMedGoogle Scholar
  22. 22.
    Karampinos DC, Ruschke S, Gordijenko O, Grande Garcia E, Kooijman H, Burgkart R, Rummeny EJ, Bauer JS, Baum T (2015) Association of MRS-based vertebral bone marrow fat fraction with bone strength in a human in vitro model. J Osteoporos 2015:1–8CrossRefGoogle Scholar
  23. 23.
    Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK (2011) Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring) 19:49–53CrossRefGoogle Scholar
  24. 24.
    Bredella MA, Gill CM, Gerweck AV, Landa MG, Kumar V, Daley SM, Torriani M, Miller KK (2013) Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology 269:534–541CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cordes C, Dieckmeyer M, Ott B, Shen J, Ruschke S, Settles M, Eichhorn C, Bauer JS, Kooijman H, Rummeny EJ, Skurk T, Baum T, Hauner H, Karampinos DC (2015) MR-detected changes in liver fat, abdominal fat, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J Magn Reson Imaging 42:1272–1280CrossRefPubMedGoogle Scholar
  26. 26.
    Kim YP, Kannengiesser S, Paek M-Y, Kim S, Chung T-S, Yoo YH, Yoon C-S, Song H-T, Lee YH, Suh J-S (2014) Differentiation between focal malignant marrow-replacing lesions and benign red marrow deposition of the spine with T2*-corrected fat-signal fraction map using a three-echo volume interpolated breath-hold gradient echo Dixon sequence. Korean J Radiol 15:781–791CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schraml C, Schmid M, Gatidis S, Schmidt H, la Fougère C, Nikolaou K, Schwenzer NF (2015) Multiparametric analysis of bone marrow in cancer patients using simultaneous PET/MR imaging: correlation of fat fraction, diffusivity, metabolic activity, and anthropometric data. J Magn Reson Imaging 42:1048–1056CrossRefPubMedGoogle Scholar
  28. 28.
    Ollivier L, Brisse H, Leclère J (2015) Bone marrow imaging: follow-up after treatment in cancer patients. Cancer Imaging 2:90–92PubMedCentralGoogle Scholar
  29. 29.
    Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17:743–761CrossRefPubMedGoogle Scholar
  30. 30.
    Bolan PJ, Arentsen L, Sueblinvong T, Zhang Y, Moeller S, Carter JS, Downs LS, Ghebre R, Yee D, Froelich J, Hui S (2013) Water–fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients. J Magn Reson Imaging 38:1578–1584CrossRefPubMedGoogle Scholar
  31. 31.
    Carmona R, Pritz J, Bydder M, Gulaya S, Zhu H, Williamson CW, Welch CS, Vaida F, Bydder G, Mell LK (2014) Fat composition changes in bone marrow during chemotherapy and radiation therapy. Int J Radiat Oncol Biol Phys 90:155–163CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cristy M (1981) Active bone marrow distribution as a function of age in humans. Phys Med Biol 26:389–400CrossRefPubMedGoogle Scholar
  33. 33.
    Moulopoulos LA, Dimopoulos MA (1997) Magnetic resonance imaging of the bone marrow in hematologic malignancies. Blood 90:2127–2147PubMedGoogle Scholar
  34. 34.
    Glover GH, Schneider E (1991) Three-point dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 18:371–383CrossRefPubMedGoogle Scholar
  35. 35.
    Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang ZP (2008) Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med 59:571–580CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yu H, Yu H, McKenzie CA, Shimakawa A, Shimakawa A, Vu AT, Brau ACS, Beatty PJ, Pineda AR, Brittain JH, Brittain JH, Reeder SB, Reeder SB (2007) Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 26:1153–1161CrossRefPubMedGoogle Scholar
  37. 37.
    Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, Lavine JE, Sirlin CB (2008) Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 26:347–359CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB (2008) Multiecho water–fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60:1122–1134CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu C-Y, McKenzie CA, Yu H, Brittain JH, Reeder SB (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T1 and noise. Magn Reson Med 58:354–364CrossRefPubMedGoogle Scholar
  40. 40.
    Karampinos DC, Yu H, Yu H, Shimakawa A, Shimakawa A, Link TM, Majumdar S (2011) T1-corrected fat quantification using chemical shift-based water/fat separation: application to skeletal muscle. Magn Reson Med 66:1312–1326CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Karampinos DC, Yu H, Shimakawa A, Link TM, Majumdar S (2012) Chemical shift-based water/fat separation in the presence of susceptibility-induced fat resonance shift. Magn Reson Med 68:1495–1505CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hernando D, Sharma SD, Kramer H, Reeder SB (2014) On the confounding effect of temperature on chemical shift-encoded fat quantification. Magn Reson Med 72:464–470CrossRefPubMedGoogle Scholar
  43. 43.
    Colgan TJ, Hernando D, Sharma SD, Reeder SB (2016) The effects of concomitant gradients on chemical shift encoded MRI. Magn Reson Med. doi: 10.1002/mrm.26461 PubMedGoogle Scholar
  44. 44.
    Ruschke S, Eggers H, Kooijman H, Diefenbach MN, Baum T, Haase A, Rummeny EJ, Hu HH, Karampinos DC (2016) Correction of phase errors in quantitative water–fat imaging using a monopolar time-interleaved multi-echo gradient echo sequence. Magn Reson Med. doi: 10.1002/mrm.26485 Google Scholar
  45. 45.
    Lu W, Yu H, Shimakawa A, Alley M, Reeder SB, Hargreaves BA (2008) Water–fat separation with bipolar multiecho sequences. Magn Reson Med 60:198–209CrossRefPubMedGoogle Scholar
  46. 46.
    Yu H, Shimakawa A, McKenzie CA, Lu W, Reeder SB, Hinks RS, Brittain JH (2010) Phase and amplitude correction for multi-echo water–fat separation with bipolar acquisitions. J Magn Reson Imaging 31:1264–1271CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yu H, Shimakawa A, Hines CDG, McKenzie CA, Hamilton G, Sirlin CB, Brittain JH, Reeder SB (2011) Combination of complex-based and magnitude-based multiecho water–fat separation for accurate quantification of fat-fraction. Magn Reson Med 66:199–206CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hernando D, Hines CDG, Yu H, Reeder SB (2012) Addressing phase errors in fat–water imaging using a mixed magnitude/complex fitting method. Magn Reson Med 67:638–644CrossRefPubMedGoogle Scholar
  49. 49.
    Peterson P, Mansson S (2014) Fat quantification using multiecho sequences with bipolar gradients: investigation of accuracy and noise performance. Magn Reson Med 71:219–229CrossRefPubMedGoogle Scholar
  50. 50.
    Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A (2013) Marrow fat and bone—new perspectives. J Clin Endocrinol Metab 98:935–945CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19:109–124CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pineda AR, Reeder SB, Wen Z, Pelc NJ (2005) Cramér-Rao bounds for three-point decomposition of water and fat. Magn Reson Med 54:625–635CrossRefPubMedGoogle Scholar
  53. 53.
    Gee CS, Nguyen JTK, Marquez CJ, Heunis J, Lai A, Wyatt C, Han M, Kazakia G, Burghardt AJ, Karampinos DC, Carballido-Gamio J, Krug R (2015) Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. J Magn Reson Imaging 42:539–544CrossRefPubMedGoogle Scholar
  54. 54.
    Berglund J, Johansson L, Ahlström H, Kullberg J (2010) Three-point Dixon method enables whole-body water and fat imaging of obese subjects. Magn Reson Med 63:1659–1668CrossRefPubMedGoogle Scholar
  55. 55.
    Hu HH, Börnert P, Hernando D, Kellman P, Ma J, Jingfei Reeder S, Sirlin C (2012) ISMRM workshop on fat–water separation: insights, applications and progress in MRI. Magn Reson Med 68:378–388CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ren J, Dimitrov I, Sherry AD, Malloy CR (2008) Composition of adipose tissue and marrow fat in humans by 1H NMR at 7T. J Lipid Res 49:2055–2062CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bydder M, Girard O, Hamilton G, Hamilton G (2011) Mapping the double bonds in triglycerides. Magn Reson Imaging 29:1041–1046CrossRefPubMedGoogle Scholar
  58. 58.
    Kugel H, Jung C, Schulte O, Heindel W (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268CrossRefPubMedGoogle Scholar
  59. 59.
    Griffith JF, Yeung DKW, Ma HT, Leung JCS, Kwok TCY, Leung PC (2012) Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 36:225–230CrossRefPubMedGoogle Scholar
  60. 60.
    Custer RP (1932) Studies on the structure and function of bone marrow. 17:951–960Google Scholar
  61. 61.
    Walker HS, Dietrich RB, Flannigan BD, Lufkin RB, Peacock WJ, Kangarloo H (1987) Magnetic resonance imaging of the pediatric spine. Radiographics 7:1129–1152CrossRefPubMedGoogle Scholar
  62. 62.
    Sebag GH, Dubois J, Tabet M, Bonato A, Lallemand D (1993) Pediatric spinal bone marrow: assessment of normal age-related changes in the MRI appearance. Pediatr Radiol 23:515–518CrossRefPubMedGoogle Scholar
  63. 63.
    Taccone A, Oddone M, Occhi M, Dell’Acqua A, Ciccone MA (1995) MRI “road-map” of normal age-related bone marrow. Pediatr Radiol 25:588–595CrossRefPubMedGoogle Scholar
  64. 64.
    Foster K, Chapman S, Johnson K (2004) MRI of the marrow in the paediatric skeleton. Clin Radiol 59:651–673CrossRefPubMedGoogle Scholar
  65. 65.
    Ishijima H, Ishizaka H, Horikoshi H, Sakurai M (1996) Water fraction of lumbar vertebral bone marrow estimated from chemical shift misregistration on MR imaging: normal variations with age and sex. AJR Am J Roentgenol 167:355–358CrossRefPubMedGoogle Scholar
  66. 66.
    Gower BA, Nagy TR, Goran MI, Toth MJ (1998) Fat distribution and plasma lipid-lipoprotein concentrations in pre-and postmenopausal women. J Obes 22:605–611CrossRefGoogle Scholar
  67. 67.
    Toth MJ, Tchernof A, Sites CK, Poehlman ET (2000) Menopause-related changes in body fat distribution. Ann N Y Acad Sci 904:502–506CrossRefPubMedGoogle Scholar
  68. 68.
    Blouin K, Boivin A, Tchernof A (2008) Androgens and body fat distribution. J Steroid Biochem Mol Biol 108:272–280CrossRefPubMedGoogle Scholar
  69. 69.
    Duda SH, Laniado M, Schick F, Strayle M, Claussen CD (1995) Normal bone marrow in the sacrum of young adults: differences between the sexes seen on chemical-shift MR imaging. AJR Am J Roentgenol 164:935–940CrossRefPubMedGoogle Scholar
  70. 70.
    Li X, Kuo D, Schafer AL, Porzig A, Link TM, Black D, Schwartz AV (2011) Quantification of vertebral bone marrow fat content using 3 tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 33:974–979CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© ESMRMB 2017

Authors and Affiliations

  1. 1.Department of Radiology, Klinikum rechts der IsarTechnical University of MunichMünchenGermany
  2. 2.Radiology, Phoenix Children’s HospitalPhoenixUSA
  3. 3.Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der IsarTechnical University of MunichMünchenGermany
  4. 4.Philips Research LaboratoryHamburgGermany

Personalised recommendations