A low-cost Mr compatible ergometer to assess post-exercise phosphocreatine recovery kinetics

  • Niels D. Naimon
  • Jerzy Walczyk
  • James S. Babb
  • Oleksandr Khegai
  • Xuejiao Che
  • Leeor Alon
  • Ravinder R. Regatte
  • Ryan Brown
  • Prodromos ParasoglouEmail author
Research Article



To develop a low-cost pedal ergometer compatible with ultrahigh (7 T) field MR systems to reliably quantify metabolic parameters in human lower leg muscle using phosphorus magnetic resonance spectroscopy.

Materials and methods

We constructed an MR compatible ergometer using commercially available materials and elastic bands that provide resistance to movement. We recruited ten healthy subjects (eight men and two women, mean age ± standard deviation: 32.8 ± 6.0 years, BMI: 24.1 ± 3.9 kg/m2). All subjects were scanned on a 7 T whole-body magnet. Each subject was scanned on two visits and performed a 90 s plantar flexion exercise at 40% maximum voluntary contraction during each scan. During the first visit, each subject performed the exercise twice in order for us to estimate the intra-exam repeatability, and once during the second visit in order to estimate the inter-exam repeatability of the time constant of phosphocreatine recovery kinetics. We assessed the intra and inter-exam reliability in terms of the within-subject coefficient of variation (CV).


We acquired reliable measurements of PCr recovery kinetics with an intra- and inter-exam CV of 7.9% and 5.7%, respectively.


We constructed a low-cost pedal ergometer compatible with ultrahigh (7 T) field MR systems, which allowed us to quantify reliably PCr recovery kinetics in lower leg muscle using 31P-MRS.


Phosphorus Human skeletal muscle Exercise Magnetic resonance spectroscopy 



The authors thank Cornel Stefanescu for help with ergometer construction. This study was supported by NIH grants RO1 DK106292, and R01 AR060238, and was performed under the rubric of the Center of Advanced Imaging Innovation and Research (CAI2R), a NIBIB Biomedical Technology Resource Center (NIH P41 EB017183).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10334_2016_605_MOESM1_ESM.skp (2.8 mb)
Supplementary material 1 (skp 2854 kb)
10334_2016_605_MOESM2_ESM.skp (2.8 mb)
Supplementary material 2 (skp 2874 kb)
10334_2016_605_MOESM3_ESM.m (1 kb)
Supplementary material 3 (m 2 kb)


  1. 1.
    Chance B, Eleff S, Leigh JS, Sokolow D, Sapega A (1981) Mitochondrial regulation of phosphocreatine inorganic-phosphate ratios in exercising human-muscle- a gated 31P NMR study. Proc Natl Acad Sci USA 78(11):6714–6718CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Newman RJ, Bore PJ, Chan L, Gadian DG, Styles P, Taylor D, Radda GK (1982) Nuclear magnetic-resonance studies of forearm muscle in Duchenne dystrophy. Brit Med J 284(6322):1072–1074CrossRefGoogle Scholar
  3. 3.
    Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ (2015) Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol 213(1):107–144CrossRefGoogle Scholar
  4. 4.
    Parasoglou P, Xia D, Chang G, Convit A, Regatte RR (2013) Three-dimensional mapping of the creatine kinase enzyme reaction rate in muscles of the lower leg. NMR Biomed 26(9):1142–1151CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fiedler GB, Schmid AI, Goluch S, Schewzow K, Laistler E, Niess F, Unger E, Wolzt M, Mirzahosseini A, Kemp GJ, Moser E, Meyerspeer M (2016) Skeletal muscle ATP synthesis and cellular H + handling measured by localized 31P-MRS during exercise and recovery. Sci Rep 6:32037CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kemp GJ, Crowe AV, Anijeet HK, Gong QY, Bimson WE, Frostick SP, Bone JM, Bell GM, Roberts JN (2004) Abnormal mitochondrial function and muscle wasting, but normal contractile efficiency, in haemodialysed patients studied non-invasively in vivo. Nephrol Dial Transplant 19(6):1520–1527CrossRefPubMedGoogle Scholar
  7. 7.
    Chance B, Eleff S, Bank W, Leigh JS, Warnell R (1982) P31 NMR-studies of control of mitochondrial-function in phosphofructokinase-deficient human skeletal muscle. Proc Natl Acad Sci USA 79(24):7714–7718CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Prompers JJ, Wessels B, Kemp GJ, Nicolay K (2014) MITOCHONDRIA: investigation of in vivo muscle mitochondrial function by 31P magnetic resonance spectroscopy. Int J Biochem Cell Biol 50:67–72CrossRefPubMedGoogle Scholar
  9. 9.
    Kemp GJ, Roberts N, Bimson WE, Bakran A, Frostick SP (2002) Muscle oxygenation and ATP turnover when blood flow is impaired by vascular disease. Mol Biol Rep 29(1, 2):187–191CrossRefPubMedGoogle Scholar
  10. 10.
    Arnold DL, Matthews PM, Radda GK (1984) Metabolic recovery after exercise and the assessment of mitochondrial function invivo in human skeletal-muscle by means of 31P NMR. Magn Reson Med 1(3):307–315CrossRefPubMedGoogle Scholar
  11. 11.
    Kemp GJ, Taylor DJ, Radda GK (1993) Control of phosphocreatine resynthesis during recovery from exercise in human skeletal-muscle. NMR Biomed 6(1):66–72CrossRefPubMedGoogle Scholar
  12. 12.
    Prompers JJ, Jeneson JAL, Drost MR, Oomens CCW, Strijkers GJ, Nicolay K (2006) Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR Biomed 19(7):927–953CrossRefPubMedGoogle Scholar
  13. 13.
    Taivassalo T, Shoubridge EA, Chen J, Kennaway NG, DiMauro S, Arnold DL, Haller RG (2001) Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol 50(2):133–141CrossRefPubMedGoogle Scholar
  14. 14.
    Crowther GJ, Milstein JM, Jubrias SA, Kushmerick MJ, Gronka RK, Conley KE (2003) Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes. Am J Physiol Endocrinol Metab 284(4):E655–E662CrossRefPubMedGoogle Scholar
  15. 15.
    Isbell DC, Berr SS, Toledano AY, Epstein FH, Meyer CH, Rogers WJ, Harthun NL, Hagspiel KD, Weltman A, Kramer CM (2006) Delayed calf muscle phosphocreatine recovery after exercise identifies peripheral arterial disease. J Am Coll Cardiol 47(11):2289–2295CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Keller U, Oberhansli R, Huber P, Widmer LK, Aue WP, Hassink RI, Muller S, Seelig J (1985) Phosphocreatine content and intracellular pH of calf muscle measured by phosporus NMR spectroscopy in occlusive arterial disease if the legs. Eur J Clin Invest 15(6):382–388CrossRefPubMedGoogle Scholar
  17. 17.
    Chance B, Eleff S, Leigh J (1980) Noninvasive, nondestructive approaches to cell bioenergetics. Proc Natl Acad Sci USA 77(12):7430–7434CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Meyer RA (1988) A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol 254(4):C548–C553PubMedGoogle Scholar
  19. 19.
    Mahler M (1985) First-order kinetics of muscle oxygen consumption, and an equivalent proportionality between QO2 and phosphorylcreatine level. Implications for the control of respiration. J Gen Physiol 86(1):135–165CrossRefPubMedGoogle Scholar
  20. 20.
    Funk CI, Clark A, Connett RJ (1990) A simple model of aerobic metabolism: applications to work transitions in muscle. Am J Physiol 258(6):C995–C1005PubMedGoogle Scholar
  21. 21.
    Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK (1998) Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Mol Cell Biochem 184(1–2):249–289CrossRefPubMedGoogle Scholar
  22. 22.
    Diekman EF, Visser G, Schmitz JPJ, Nievelstein RAJ, De Sain-van Der Velden M, Wardrop M, Van der Pol WL, van Riel NAW, Takken T, Jeneson JAL, Houten SM (2016) Altered energetics of exercise explain risk of rhabdomyolysis in very long-chain acyl-coa dehydrogenase deficiency. PLoS ONE 11(2):e0147818CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    McCully KK, Turner TN, Langley J, Zhao Q (2009) The reproducibility of measurements of intramuscular magnesium concentrations and muscle oxidative capacity using 31 P MRS. Dyn Med 8(1):1CrossRefGoogle Scholar
  24. 24.
    Tschiesche K, Rothamel M, Rzanny R, Gussew A, Hiepe P, Reichenbach JR (2014) MR-compatible pedal ergometer for reproducible exercising of the human calf muscle. Med Eng Phys 36(7):933–937CrossRefPubMedGoogle Scholar
  25. 25.
    Meyerspeer M, Krššák M, Kemp G, Roden M, Moser E (2005) Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig. Magn Reson Mater Phy 18(5):257–262CrossRefGoogle Scholar
  26. 26.
    Quistorff B, Nielsen S, Thomsen C, Jensen KE, Henriksen O (1990) A simple calf muscle ergometer for use in a standard whole-body MR scanner. Magn Reson Med 13(3):444–449CrossRefPubMedGoogle Scholar
  27. 27.
    Greiner A, Esterhammer R, Messner H, Biebl M, Mühlthaler H, Fraedrich G, Jaschke WR, Schocke MFH (2006) High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. J Vasc Surg 43(5):978–986CrossRefPubMedGoogle Scholar
  28. 28.
    Gussew A, Hiepe P, Rzanny R, Reichenbach J (2012) Improved reproducibility of dynamic 31P-MRS in the calf muscle during exercise by self-adjusted muscle activity. Biomed Eng 57:757–760CrossRefGoogle Scholar
  29. 29.
    Francescato MP, Cettolo V (2001) Two-pedal ergometer for in vivo MRS studies of human calf muscles. Magn Reson Med 46(5):1000–1005CrossRefPubMedGoogle Scholar
  30. 30.
    Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85(4):1364–1373CrossRefPubMedGoogle Scholar
  31. 31.
    Layec G, Bringard A, Vilmen C, Micallef J-P, Le Fur Y, Perrey S, Cozzone PJ, Bendahan D (2008) Accurate work-rate measurements during in vivo MRS studies of exercising human quadriceps. Magn Reson Mater Phy 21(3):227–235CrossRefGoogle Scholar
  32. 32.
    Šedivý P, Kipfelsberger MC, Dezortová M, Krššák M, Drobný M, Chmelík M, Rydlo J, Trattnig S, Hájek M, Valkovič L (2015) Dynamic 31P MR spectroscopy of plantar flexion: influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design. Med Phys 42(4):1678–1689CrossRefPubMedGoogle Scholar
  33. 33.
    Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129(1):35–43CrossRefPubMedGoogle Scholar
  34. 34.
    Naressi A, Couturier C, Devos J, Janssen M, Mangeat C, De Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for the MRUI quantitation package. Magn Reson Mater Phy 12(2–3):141–152CrossRefGoogle Scholar
  35. 35.
    Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef J-P, Perrey S, Cozzone PJ, Bendahan D (2009) Reproducibility assessment of metabolic variables characterizing muscle energetics in vivo: a P-31-MRS study. Magn Reson Med 62(4):840–854CrossRefPubMedGoogle Scholar
  36. 36.
    Larson-Meyer DE, Newcomer BR, Hunter GR, Hetherington HP, Weinsier RL (2000) 31P MRS measurement of mitochondrial function in skeletal muscle: reliability, force-level sensitivity and relation to whole body maximal oxygen uptake. NMR Biomed 13(1):14–27CrossRefPubMedGoogle Scholar
  37. 37.
    Edwards LM, Tyler DJ, Kemp GJ, Dwyer RM, Johnson A, Holloway CJ, Nevill AM, Clarke K (2012) The reproducibility of 31-phosphorus MRS measures of muscle energetics at 3 Tesla in trained men. PLoS ONE 7(6):e37237CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    van den Broek NM, De Feyter HM, de Graaf L, Nicolay K, Prompers JJ (2007) Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates. Am J Physiol Cell Physiol 293(1):C228–C237CrossRefPubMedGoogle Scholar
  39. 39.
    Sleigh A, Lupson V, Thankamony A, Dunger DB, Savage DB, Carpenter TA, Kemp GJ (2016) Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using 31P magnetic resonance spectroscopy. Sci Rep 6:19057CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jubrias SA, Crowther GJ, Shankland EG, Gronka RK, Conley KE (2003) Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol 553(2):589–599CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Moraux A, Canal A, Ollivier G, Ledoux I, Doppler V, Payan C, Hogrel J-Y (2013) Ankle dorsi-and plantar-flexion torques measured by dynamometry in healthy subjects from 5 to 80 years. BMC Musculoskelet Disord 14(1):1CrossRefGoogle Scholar
  42. 42.
    Svantesson U, Grimby G, Thomee R (1994) Potentiation of concentric plantar flexion torque following eccentric and isometric muscle actions. Acta Physiol Scand 152(3):287–293CrossRefPubMedGoogle Scholar
  43. 43.
    Meyerspeer M, Robinson S, Nabuurs CI, Scheenen T, Schoisengeier A, Unger E, Kemp GJ, Moser E (2012) Comparing localized and nonlocalized dynamic 31P magnetic resonance spectroscopy in exercising muscle at 7T. Magn Reson Med 68(6):1713–1723CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schmid AI, Meyerspeer M, Robinson SD, Goluch S, Wolzt M, Fiedler GB, Bogner W, Laistler E, Krššák M, Moser E, Trattnig S, Valkovič L (2015) Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using 31P gradient-Echo MRI at 7 Tesla. Magn Reson Med 75(6):2324–2331CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2017

Authors and Affiliations

  1. 1.Bernard and Irene Schwartz Center for Biomedical Imaging, Department of RadiologyNew York University School of MedicineNew YorkUSA
  2. 2.Center for Advanced Imaging Innovation and Research (CAI2R), Department of RadiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations