Fast T1 and T2 mapping methods: the zoomed U-FLARE sequence compared with EPI and snapshot-FLASH for abdominal imaging at 11.7 Tesla

  • Géraldine Pastor
  • María Jiménez-González
  • Sandra Plaza-García
  • Marta Beraza
  • Torsten Reese
Research Article

Abstract

Objective

A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods.

Materials and methods

Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence.

Results

Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look–Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms.

Conclusion

This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.

Keywords

Magnetic resonance imaging Abdomen Relaxation Mice High-field 

Supplementary material

10334_2016_604_MOESM1_ESM.doc (106 kb)
Supplementary material 1 (DOC 105 kb)

References

  1. 1.
    Weiskopf N, Suckling J, Williams G, Correia MMM, Inkster B, Tait R, Ooi C, Bullmore ET, Lutti A (2013) Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front Neurosci 7:1–11CrossRefGoogle Scholar
  2. 2.
    Norris DG (1991) Ultrafast low-angle RARE: U-FLARE. Magn Reson Med 17:539–542CrossRefPubMedGoogle Scholar
  3. 3.
    Haase A (1990) Snapshot FLASH MRI. Applications to T1, T2 and chemical shift imaging. Magn Reson Med 13:77–89CrossRefPubMedGoogle Scholar
  4. 4.
    Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C: Solid State Phys 10:L55–L58CrossRefGoogle Scholar
  5. 5.
    Ljunggren S (1983) A simple graphical representation of Fourier-based imaging methods. J Magn Reson 54:338–343Google Scholar
  6. 6.
    Ahn CB, Kim JH, Cho ZH (1986) High-speed spiral-scan echo planar NMR imaging-1. IEEE Trans Med Imaging 5:2–7CrossRefPubMedGoogle Scholar
  7. 7.
    Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41:250–251CrossRefGoogle Scholar
  8. 8.
    Henderson E, McKinnon G, Lee TY, Rutt BK (1999) A fast 3D look-locker method for volumetric T1 mapping. Magn Reson Imaging 17:1163–1171CrossRefPubMedGoogle Scholar
  9. 9.
    Shin W, Gu H, Yang Y (2009) Fast high-resolution T1 mapping using inversion-recovery look-locker echo-planar imaging at steady state: optimization for accuracy and reliability. Magn Reson Med 61:899–906CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0T: relaxation times and image contrast. AJR 183:343–351CrossRefPubMedGoogle Scholar
  11. 11.
    Ding Y, Mason RP, McColl RW, Yuan Q, Hallac RR, Sims RD, Weatherall PT (2013) Simultaneous measurement of tissue oxygen level-dependent (TOLD) and blood oxygenation level-dependent (BOLD) effects in abdominal tissue oxygenation level studies. J Magn Reson Imaging 38:1230–1236CrossRefPubMedGoogle Scholar
  12. 12.
    Deoni SCL (2010) Quantitative relaxometry of the brain. Top Magn Reson Imaging 21:101–113CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Deichmann R, Adolf H, Nöth U, Morrissey S, Schwarzbauer C, Haase A (1995) Fast T2-mapping with snapshot flash imaging. Magn Reson Imaging 13:633–639CrossRefPubMedGoogle Scholar
  14. 14.
    Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833CrossRefPubMedGoogle Scholar
  15. 15.
    Kara F, Chen F, Ronen I, De Groot HJM, Matysik J, Alia A (2013) In vivo measurement of transverse relaxation time in the mouse brain at 17.6 T. Magn Reson Med 70:985–993CrossRefPubMedGoogle Scholar
  16. 16.
    Norris DG, Börnert P, Reese T, Leibfritz D (1992) On the application of ultra-fast RARE experiments. Magn Reson Med 27:142–164CrossRefPubMedGoogle Scholar
  17. 17.
    Bovens SM, te Boekhorst BCM, den Ouden K, van de Kolk KWA, Nauerth A, Nederhoff MGJ, Pasterkamp G, ten Hove M, van Echteld CJA (2011) Evaluation of infarcted murine heart function: comparison of prospectively triggered with self-gated MRI. NMR Biomed 24:307–315CrossRefPubMedGoogle Scholar
  18. 18.
    Rajendran R, Lew SK, Yong CX, Tan J, Wang DJJ, Chuang KH (2013) Quantitative mouse renal perfusion using arterial spin labeling. NMR Biomed 26:1225–1232CrossRefPubMedGoogle Scholar
  19. 19.
    Bilgen M, Al-Hafez B, Berman NEJ, Festoff BW (2005) Magnetic resonance imaging of mouse spinal cord. Magn Reson Med 54:1226–1231CrossRefPubMedGoogle Scholar
  20. 20.
    Stanisz G, Odrobina E, Pun J, Escaravage M, Graham S, Bronskill M, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512CrossRefPubMedGoogle Scholar
  21. 21.
    Callot V, Duhamel G, Cozzone PJ (2007) In vivo mouse spinal cord imaging using echo-planar imaging at 11.75 T. Magn Reson Mater Phy 20:169–173CrossRefGoogle Scholar
  22. 22.
    Kingsley PB, Ogg RJ, Reddick WE, Steen RG (1998) Correction of errors caused by imperfect inversion pulses in MR imaging measurement of T1 relaxation times. Magn Reson Imaging 16:1049–1055CrossRefPubMedGoogle Scholar
  23. 23.
    Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stolca P, Nishimura DG (2010) A robust methodology for in vivo T1 mapping. Magn Reson Med 64:1057–1067CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang J, Mao W, Qiu M, Smith MB, Constable RT (2006) Factors influencing flip angle mapping in MRI: RF pulse shape, slice-select gradients, off-resonance excitation, and B0 inhomogeneities. Magn Reson Med 56:463–468CrossRefPubMedGoogle Scholar
  25. 25.
    Rafat Zand K, Reinhold C, Haider MA, Nakai A, Rohoman L, Maheshwari S (2007) Artifacts and pitfalls in MR imaging of the pelvis. J Magn Reson Imaging 26:480–497CrossRefGoogle Scholar
  26. 26.
    Busse RF, Hariharan H, Vu A, Brittain JH (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55:1030–1037CrossRefPubMedGoogle Scholar
  27. 27.
    Han M, Chiba K, Banerjee S, Carballido-Gamio J, Krug R (2016) Variable flip angle 3D fast spin-echo sequence combined with outer volume suppression for imaging trabecular bone structure of the proximal femur. J Magn Reson Imaging 41:1300–1310CrossRefGoogle Scholar
  28. 28.
    Gao Y, Chen Y, Ma D, Jiang Y, Herrmann KA, Vincent JA, Dell KM, Drumm ML, Brady-Kalnay SM, Griswold MA, Flask CA, Lu L (2015) Preclinical MR fingerprinting (MRF) at 7 T: effective quantitative imaging for rodent disease models. NMR Biomed 28:384–394CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Carr HY (1958) Steady-state free precession in nuclear magnetic resonance. Phys Rev 112:1693–1701CrossRefGoogle Scholar
  30. 30.
    Oppelt A, Graumann R, Barfuss H, Fischer H, Hartl W, Schajor W (1986) FISP—a new fast MRI sequence. Electromedica 54:15–18Google Scholar
  31. 31.
    Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA (2013) Magnetic resonance fingerprinting. Nature 495:187–192CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold MA (2015) MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med 74:1621–1631CrossRefPubMedGoogle Scholar
  33. 33.
    Hardy CJ, Cline HE (1989) Spatial localization in two dimensions using NMR designer pulses. J Magn Reson 82:647–654Google Scholar
  34. 34.
    Larkman D, Hajnal J, Herlihy A, Coutts G, Young I, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317CrossRefPubMedGoogle Scholar
  35. 35.
    Norris DG, Koopmans PJ, Boyacioglu R, Barth M (2011) Power independent of number of slices (PINS) radiofrequency pulses for low-power simultaneous multislice excitation. Magn Reson Med 66:1234–1240CrossRefPubMedGoogle Scholar
  36. 36.
    Norris DG, Boyacioǧlu R, Schulz J, Barth M, Koopmans PJ (2014) Application of PINS radiofrequency pulses to reduce power deposition in RARE/turbo spin echo imaging of the human head. Magn Reson Med 71:44–49CrossRefPubMedGoogle Scholar
  37. 37.
    Gagoski BA, Bilgic B, Eichner C, Bhat H, Grant PE, Wald LL, Setsompop K (2015) RARE/turbo spin echo imaging with simultaneous multislice wave-CAIPI. Magn Reson Med 73:929–938CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© ESMRMB 2017

Authors and Affiliations

  1. 1.Molecular Imaging UnitCIC biomaGUNEDonostia-San SebastiánSpain
  2. 2.Metabolism DivisionJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations