Comparison of two quantitative proton density mapping methods in multiple sclerosis

  • René-Maxime Gracien
  • Sarah C. Reitz
  • Marlies Wagner
  • Christoph Mayer
  • Steffen Volz
  • Stephanie-Michelle Hof
  • Vinzenz Fleischer
  • Amgad Droby
  • Helmuth Steinmetz
  • Sergiu Groppa
  • Elke Hattingen
  • Johannes C. Klein
  • Ralf Deichmann
Research Article



Proton density (PD) mapping requires correction for the receive profile (RP), which is frequently performed via bias-field correction. An alternative RP-mapping method utilizes a comparison of uncorrected PD-maps and a value ρ(T1) directly derived from T1-maps via the Fatouros equation. This may be problematic in multiple sclerosis (MS), if respective parameters are only valid for healthy brain tissue. We aimed to investigate whether the alternative method yields correct PD values in MS patients.


PD mapping was performed on 27 patients with relapsing-remitting MS and 27 healthy controls, utilizing both methods, yielding reference PD values (PDref, bias-field method) and PDalt (alternative method).


PDalt-values closely matched PDref, both for patients and controls. In contrast, ρ(T1) differed by up to 3 % from PDref, and the voxel-wise correlation between PDref and ρ(T1) was reduced in a patient subgroup with a higher degree of disability. Still, discrepancies between ρ(T1) and PDref were almost identical across different tissue types, thus translating into a scaling factor, which cancelled out during normalization to 100 % in CSF, yielding a good agreement between PDalt and PDref.


RP correction utilizing the auxiliary parameter ρ(T1) derived via the Fatouros equation provides accurate PD results in MS patients, in spite of discrepancies between ρ(T1) and actual PD values.


Quantitative MRI Proton density Fatouros equation Relapsing-remitting multiple sclerosis 



Expanded disability status scale


Gradient echo


Gray matter


Multiple sclerosis


Normal appearing gray matter


Normal appearing white matter


Proton density


Partial volume estimate


Quantitative MRI




Region of interest


Receive coil profile


Relapsing-remitting MS


White matter



This work was supported by the Bundesministerium für Bildung und Forschung [DLR 01GO0203; Brain Imaging Center Frankfurt], the Deutsche Forschungsgemeinschaft [DFG CRC-TR 128; Drs. Zipp and Deichmann], and the LOEWE-Program “Neuronal Coordination Forschungsschwerpunkt Frankfurt” (NeFF) [ZA 233/1-1].

Compliance with ethical standards

Conflict of interest

Dr. H. Steinmetz has received speaker’s honoraria from Bayer, Sanofi and Boehringer Ingelheim. Dr. J.C. Klein received speaker honoraria and travel reimbursement from Medtronic, AstraZeneca, Abbott Laboratories and AbbVie. Dr. C. Mayer has received honoraria for speaking/consultation and travel grants from Bayer Healthcare, Biogen Idec, Merck Serono, Genzyme, a Sanofi Company, Novartis Pharmaceuticals, Teva Pharma GmbH, and research grants from Novartis Pharmaceuticals.


This work was supported by the Bundesministerium für Bildung und Forschung [DLR 01GO0203; Brain Imaging Center Frankfurt], the Deutsche Forschungsgemeinschaft [DFG CRC-TR 128; Drs. Zipp and Deichmann], and the LOEWE-Program “Neuronal Coordination Forschungsschwerpunkt Frankfurt” (NeFF) [ZA 233/1-1].

Research involving human participants/informed consent

Written informed consent was given from all individual participants included in the study and the study was approved by the ethics committee of the State Medical Association of Rhineland-Palatine and by the Institutional Review Board. All procedures involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments.


  1. 1.
    Neeb H, Ermer V, Stocker T, Shah NJ (2008) Fast quantitative mapping of absolute water content with full brain coverage. Neuroimage 42(3):1094–1109CrossRefPubMedGoogle Scholar
  2. 2.
    Gracien R-M, Reitz SC, Hof SM, Fleischer V, Zimmermann H, Droby A, Steinmetz H, Zipp F, Deichmann R, Klein JC (2016) Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex. Eur Radiol 26(8):2578–2586CrossRefPubMedGoogle Scholar
  3. 3.
    Jurcoane A, Wagner M, Schmidt C, Mayer C, Gracien R-M, Hirschmann M, Deichmann R, Volz S, Ziemann U, Hattingen E (2013) Within-lesion differences in quantitative MRI parameters predict contrast enhancement in multiple sclerosis. J Magn Reson Imaging 38(6):1454–1461CrossRefPubMedGoogle Scholar
  4. 4.
    Engström M, Warntjes Jan B M, Tisell A, Landtblom A-M, Lundberg P (2014) Multi-parametric representation of voxel-based quantitative magnetic resonance imaging. PLoS One 9(11):e111688CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tofts P (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease: measuring changes caused by disease. Wiley, ChichesterGoogle Scholar
  7. 7.
    Hasan KM, Walimuni IS, Abid H, Datta S, Wolinsky JS, Narayana PA (2012) Human brain atlas-based multimodal MRI analysis of volumetry, diffusimetry, relaxometry and lesion distribution in multiple sclerosis patients and healthy adult controls: implications for understanding the pathogenesis of multiple sclerosis and consolidation of quantitative MRI results in MS. J Neurol Sci 313(1–2):99–109CrossRefPubMedGoogle Scholar
  8. 8.
    Bluestein KT, Pitt D, Knopp MV, Schmalbrock P (2012) T1 and proton density at 7 T in patients with multiple sclerosis: an initial study. Magn Reson Imaging 30(1):19–25CrossRefPubMedGoogle Scholar
  9. 9.
    Volz S, Nöth U, Deichmann R (2012) Correction of systematic errors in quantitative proton density mapping. Magn Reson Med 68(1):74–85CrossRefPubMedGoogle Scholar
  10. 10.
    Mezer A, Yeatman JD, Stikov N, Kay KN, Cho N-J, Dougherty RF, Perry ML, Parvizi J, Le Hua H, Butts-Pauly K, Wandell BA (2013) Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nat Med 19(12):1667–1672CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Volz S, Nöth U, Jurcoane A, Ziemann U, Hattingen E, Deichmann R (2012) Quantitative proton density mapping: correcting the receiver sensitivity bias via pseudo proton densities. Neuroimage 63(1):540–552CrossRefPubMedGoogle Scholar
  12. 12.
    Fatouros PP, Marmarou A, Kraft KA, Inao S, Schwarz FP (1991) In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn Reson Med 17(2):402–413CrossRefPubMedGoogle Scholar
  13. 13.
    Fatouros PP, Marmarou A (1999) Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg 90(1):109–115CrossRefPubMedGoogle Scholar
  14. 14.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452CrossRefPubMedGoogle Scholar
  15. 15.
    Reitz SC, Hof S-M, Fleischer V, Brodski A, Gröger A, Gracien R-M, Droby A, Steinmetz H, Ziemann U, Zipp F, Deichmann R, Klein JC (2016) Multi-parametric quantitative MRI of normal appearing white matter in multiple sclerosis, and the effect of disease activity on T2. Brain Imaging Behav. doi: 10.1007/s11682-016-9550-5 Google Scholar
  16. 16.
    Gracien RM, Jurcoane A, Wagner M, Reitz SC, Mayer C, Volz S, Hof SM, Fleischer V, Droby A, Steinmetz H, Groppa S, Hattingen E, Deichmann R, Klein JC (2016) Multimodal quantitative MRI assessment of cortical damage in relapsing-remitting multiple sclerosis. J Magn Reson Imaging. doi: 10.1002/jmri.25297 PubMedGoogle Scholar
  17. 17.
    Gracien RM, Reitz SC, Hof SM, Fleischer V, Zimmermann H, Droby A, Steinmetz H, Zipp F, Deichmann R, Klein JC (2016) Assessment of cortical damage in early multiple sclerosis with quantitative T2 relaxometry. NMR Biomed 29(4):444–450CrossRefPubMedGoogle Scholar
  18. 18.
    Venkatesan R, Lin W, Haacke EM (1998) Accurate determination of spin-density and T1 in the presence of RF-field inhomogeneities and flip-angle miscalibration. Magn Reson Med 40(4):592–602CrossRefPubMedGoogle Scholar
  19. 19.
    Preibisch C, Deichmann R (2009) T1 mapping using spoiled FLASH-EPI hybrid sequences and varying flip angles. Magn Reson Med 62(1):240–246CrossRefPubMedGoogle Scholar
  20. 20.
    Volz S, Nöth U, Rotarska-Jagiela A, Deichmann R (2010) A fast B1-mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T. Neuroimage 49(4):3015–3026CrossRefPubMedGoogle Scholar
  21. 21.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens Timothy E J, Johansen-Berg H, Bannister PR, de Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, de Stefano N et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):19Google Scholar
  22. 22.
    Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 61(1):125–135CrossRefPubMedGoogle Scholar
  23. 23.
    Nöth U, Hattingen E, Bähr O, Tichy J, Deichmann R (2015) Improved visibility of brain tumors in synthetic MP-RAGE anatomies with pure T1 weighting. NMR Biomed 28(7):818–830CrossRefPubMedGoogle Scholar
  24. 24.
    Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Davies GR, Hadjiprocopis A, Altmann DR, Chard DT, Griffin CM, Rashid W, Parker GJ, Tofts PS, Kapoor R, Thompson AJ, Miller DH (2007) Normal-appearing grey and white matter T1 abnormality in early relapsing-remitting multiple sclerosis: a longitudinal study. Mult Scler 13(2):169–177CrossRefPubMedGoogle Scholar
  26. 26.
    Neema M, Stankiewicz J, Arora A, Dandamudi Venkata S R, Batt CE, Guss ZD, Al-Sabbagh A, Bakshi R (2007) T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimaging 17(Suppl 1):16–21CrossRefGoogle Scholar
  27. 27.
    Parry A, Clare S, Jenkinson M, Smith S, Palace J, Matthews PM (2003) MRI brain T1 relaxation time changes in MS patients increase over time in both the white matter and the cortex. J Neuroimaging 13(3):234–239CrossRefPubMedGoogle Scholar
  28. 28.
    Vrenken H, Geurts Jeroen J G, Knol DL, van Dijk L, Noor Dattola V, Jasperse B, van Schijndel Ronald A, Polman CH, Castelijns JA, Barkhof F, Pouwels PJW (2006) Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology 240(3):811–820CrossRefPubMedGoogle Scholar
  29. 29.
    Griffin CM, Chard DT, Parker Geoff J M, Barker GJ, Thompson AJ, Miller DH (2002) The relationship between lesion and normal appearing brain tissue abnormalities in early relapsing remitting multiple sclerosis. J Neurol 249(2):193–199CrossRefPubMedGoogle Scholar
  30. 30.
    Miller DH, Thompson AJ, Filippi M (2003) Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 250(12):1407–1419CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2016

Authors and Affiliations

  • René-Maxime Gracien
    • 1
    • 3
  • Sarah C. Reitz
    • 1
    • 3
  • Marlies Wagner
    • 2
    • 3
  • Christoph Mayer
    • 1
  • Steffen Volz
    • 3
  • Stephanie-Michelle Hof
    • 1
    • 3
  • Vinzenz Fleischer
    • 4
    • 5
  • Amgad Droby
    • 4
    • 5
  • Helmuth Steinmetz
    • 1
  • Sergiu Groppa
    • 4
    • 5
  • Elke Hattingen
    • 2
    • 3
  • Johannes C. Klein
    • 1
    • 3
    • 6
  • Ralf Deichmann
    • 3
  1. 1.Department of NeurologyGoethe UniversityFrankfurt/MainGermany
  2. 2.Department of NeuroradiologyGoethe UniversityFrankfurt/MainGermany
  3. 3.Brain Imaging CenterGoethe UniversityFrankfurt/MainGermany
  4. 4.Department of NeurologyJohannes Gutenberg UniversityMainzGermany
  5. 5.Neuroimaging Center (NIC) of the Focus Program Translational Neuroscience (FTN)Johannes Gutenberg UniversityMainzGermany
  6. 6.Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK

Personalised recommendations